

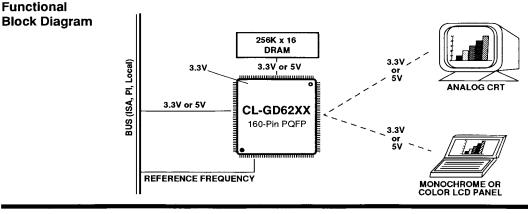
Preliminary Data Book

FEATURES

- IBM[®]-VGA hardware-compatible
- Integrated RAMDAC
- Integrated programmable frequency synthesizer
 65 MHz at 5.0V; 40 MHz at 3.3V
- Supports single 256K x 16 DRAM configuration — Symmetric or asymmetric RAS/CAS-address DRAM
- Color STN panel support (CL-GD6225/'6235 only)
 - Dual-scan color STN panel support (CL-GD6235 only)
 - 8- and 16-bit interfaces (no extra components required)
 - Up to 256 simultaneous colors from a palette of 256K
- Integrates color TFT panel support
 - --- Supports 9-, 12-, 15-, and 18-bit TFT panels --- Up to 256 simultaneous colors from a palette of 256K
- Connects directly to local bus, ISA bus (PC AT) or PI bus (CL-GD6205 connects to ISA bus only)
- Windows performance-improvement features
 - True packed-pixel addressing
 - Improved data latches for block moves
 - Color expansion for 8 bits-per-pixel graphics
 - 32 x 32 hardware cursor (2 bits-per-pixel)
- Supports 3.3V and 5.0V mixed-voltage operation
- Standby and Suspend modes save power
 - Internal timers for backlight control and Standby mode
 - Dedicated Hardware-suspend Mode pin
 - 32-kHz DRAM refresh clock in Suspend mode
- Frame-Accelerator for low-active power
 - No additional DRAMs required
 - --- Supports self-refresh DRAMs
- Simultaneous CRT and LCD (SimulSCAN[™]) operation (cont.)

Single DRAM LCD/VGA Controllers for Monochrome/ Color Notebook Computers

OVERVIEW


The CL-GD62XX (CL-GD6205/'6215/'6225/'6235) family of advanced single-chip flat panel VGA controllers are designed for use in portable systems with stringent power consumption and form-factor requirements. Product family pin compatibility provides easy upgrade capability to color or higher-performance systems.

Integration of the frequency synthesizer, RAMDAC, monochrome and color STN/TFT panel interfaces minimizes the form-factor requirement for color and monochrome graphics subsystems. All necessary panelpower sequencing logic has been integrated into the CL-GD62XX family, and a complete graphics subsystem can be built using only two active components (in less than three square inches).

The CL-GD62XX family uses a single 256K x 16 DRAM (or four 256K x 4 DRAMs) for video memory. For added flexibility, dual-CAS*-DRAM and dual-WE*-DRAM configurations are supported.

With integrated Frame-Accelerator technology, the CL-GD62XX controllers feature low-power LCD operation, yet support high LCD panel vertical-refresh rates. No additional DRAMs are required for frame

(cont.)

FEATURES (cont.)

- 64-shade grayscale at 640 x 480 resolution on monochrome STN LCD
- CRT Resolution up to 1024 x 768 with 16 colors
- CRT Resolution up to 800 x 600 with 256 colors

OVERVIEW (cont.)

acceleration because the CL-GD62XX family efficiently uses the unused portions of video memory.

Since the CL-GD62XX can use a 3.3V or 5.0V power supply, mixed-voltage operation is optimized for quick implementation of a notebook computer with reduced power consumption. The video memory, host bus interface, panel interface, and CRT interface each may be implemented with either 3.3V or 5.0V used in any combination.

The CL-GD62XX family also offers flexibility in hostinterface connections. In addition to an ISA-bus connection, the CL-GD6215/25/35 can be connected directly to a PI- or local-bus to provide additional graphics performance. The 16-bit local-bus interface can be used directly with '386SX microprocessors. Connections to 32-bit buses, such as '386DX or '486 microprocessors, can be made by using the 16-bit modes or with a minimum of extra components. The CL-GD62XX controllers also use the '486 Burst mode for multiple-cycle accesses.

The CL-GD62XX family offers true packed-pixel addressing, color expansion for 8-bit-per-pixel graphics, and hardware cursor, thus improving Windows performance. Other incorporated features, such as memory write buffers and internal asynchronous display data FIFOs, also boost performance.

Standby and Suspend power-management modes reduce power consumption when the system is not in active use. The internal Standby Counter initiates Standby mode without software intervention. During this reduced-power mode, the LCD panel is turned off while

- 132-column text modes on CRTs
- Automatic vertical expansion or centering option for LCD panels

......

160-pin (EIAJ standard) PQFP package

the video memory can be accessed and modified. In Suspend mode, all I/O pins, except a dedicated Suspend Mode pin, are deactivated to further reduce power consumption. In this mode, the video memory data is preserved, but cannot be accessed; this is useful in situations when a system remains inactive for a relatively long period of time.

The CL-GD62XX family also features SimulSCAN™, a technique introduced by Cirrus Logic for achieving simultaneous CRT and LCD operation. SimulSCAN allows portable computers to become a key part of presentation environments for sales-force automation, field service, and educational organizations. SimulSCAN is supported in both single- and dual-scan, color and monochrome, LCD panels, and fixed- and multi-frequency analog CRTs.

Proprietary algorithms in the CL-GD62XX family expand the available palette depth for color flat panels. High clock rates provide extended-resolution capability in CRT mode. At 1024 x 768 resolution, 16 simultaneous colors can be displayed; at 640 x 480 resolution, up to 256 simultaneous colors are available.

The CL-GD62XX family offers highly integrated, pincompatible LCD VGA controllers that provide unmatched performance while featuring design flexibility in CPU, video-memory interface, and power management. The CL-GD62XX family can also drive a wide variety of color and monochrome LCD flat-panel displays.

CL-GD62XX Device	Buses Supported			Panels Supported			
	ISA	PI	Local	Mono. STN	Color TFT	Color STN	Dual-Scan Color STN
CL-GD6205	~			~	~		
CL-GD6215	~	~	~	~	~		
CL-GD6225	~	~	~	~	~	~	
CL-GD6235	~	~	~	~	~	~	×

Controller Selection Guide

2

PRELIMINARY DATA BOOK

Table of Contents

1.	PIN INFORMATION
1.1	Pin Diagram for the CL-GD62057
1.2	Pin Diagram for the CL-GD62158
1.3	Pin Diagram for the CL-GD6225 and CL-GD62359
1.4	Typical Dual Monochrome Panel Connections — ISA Bus Using 256K x 16 DRAM with Dual CAS*
1.5	STN Color Panel Connections — '386SL/'486SL PI Bus Using 256K x 4 DRAMs
1.6	TFT Color Panel Connections — '386SX Local Bus Using 256K x 16 DRAM with Dual WE* 12
1.7	TFT Color Panel Connections — '386DX Local Bus Using 256K x 16 DRAMs with Dual WE* 13
1.8	Dual-Scan STN Color Panel — '486DX Local Bus/256K x 16 DRAM with Dual CAS*
1.9	Pin Summary (See Section 2 for definition of abbreviations used in these tables)
2.	DETAILED PIN DESCRIPTIONS
2.1	Host Interface — ISA Bus Mode 20
2.2	Host Interface — ISA Bus Mode
2.3	Host Interface — Local Bus (CL-GD6215/25/35 only)26
2.4	Dual-Frequency Synthesizer Interface
2.5	CRT Interface
2.6	Display Memory Interface
2.7	Miscellaneous Pins
2.8	Power Management Pins
2.9	LCD Flat Panel Interface
2.10	Power And Ground Pins
3.	FUNCTIONAL DESCRIPTION
3.1	General
3.2	Functional Blocks
3.2.1	CPU Interface
3.2.2	CPU Write Buffer
3.2.3	Graphics Controller
3.2.4	Memory Arbitrator
3.2.5	Memory Sequencer
3.2.6	CRT Controller
3.2.7	LCD Flat-Panel Controller
3.2.8	Video FIFO
3.2.9	Attribute Controller
3.2.10	
3.2.11	
3.3	Functional Operation 40
3.3.1	CPU Access to Registers 40

3.3.2 CPU Access to Display Memory 40
3.3.3 Display Memory Refresh 40
3.3.4 Screen Refresh 40
3.4 Performance
3.5 Compatibility 40
3.6 Data Bus Interface for 32-Bit Processors 40
3.6.1 '486 Burst Mode Support 41
3.6.2 CL-GD62XX Address Decode and
Latching 41
3.6.3 Bus Cycle Restart 41
3.6.4 Other Considerations 41
3.7 LCD Flat Panel Interface
3.8 Intelligent Power Management and
Sequencing
3.8.1 Normal Mode
3.8.2 Hardware Power-Management Modes
3.8.3 Standby Mode 43
3.8.3.1 Initiating/Entering Standby Mode 44
3.8.3.2 Terminating/Exiting Standby Mode 44
3.8.4 Suspend Mode 44
3.8.4.1 Hardware-Suspend Mode 44
3.8.4.2 Software-Suspend Mode 45
3.8.4.3 Initiating/Entering Suspend Mode 45
3.8.4.4 Terminating/Exiting Suspend Mode
3.8.5 Power Sequencing
3.8.5.1 LCD Panel Power-Down Sequence
3.8.5.2 LCD Panel Power-Up Sequence
3.8.6 Additional Power Management Features 46
3.8.6.1 LCD-only Operation (CRT Disable)
3862 CBT-only Operation
(LCD Panel Disable)
3.8.6.3 Backlight Timer
3.8.6.4 ACTi Function
3.9 Internal RAMDAC 46
3.9.1 RAMDAC Video Operation
3.9.2 Analog Outputs
3.9.3 Writing to the Color Look-up Table
3.9.4 Reading from the Color Look-up Table 47
4. CL-GD62XX VIDEO MODE
TABLES
4.1 CRT Video Modes
4.2 LCD Flat Panel Video Modes
5. VGA REGISTER PORT MAP51

October 1993

PRELIMINARY DATA BOOK

Table of Contents (cont.)

6. F	REGISTER INFORMATION
6.1 C	L-GD62XX Extended-Register Details
6.1.1	SR6: Unlock All CL-GD62XX Register
	Extensions
6.1.2	SR7: Extended Sequencer Modes57
6.1.3	SR8: Miscellaneous Control58
6.1.4	SR9, SRA, SR14, SR15, SR19: Scratch-Pad Registers 0-460
6.1.5	SRB, SRC, SRD, SRE: VCLK0, 1, 2, 3 Numerator Value61
6.1.6	SRF: DRAM Control
6.1.7	SR10, 30, 50, 70, 90, 80, D0, F0: Graphics
	Cursor X Position
6.1.8	SR11, 31, 51, 71, 91, B1, D1, F1: Graphics Cursor Y Position
6.1.9	SR12: Graphics Cursor Attributes
6.1.10	SR13: Graphics Cursor Pattern Address
0.1.10	Offset
6.1.11	SR16: Miscellaneous Control 268
6.1.12	SR1A: Dual-Scan Color Control (CL-GD6235 only)69
6.1.13	SR1B, SR1C, SR1D, SR1E: VCLK0, 1, 2, 3 Denominator and Post Scalar Value
6.1.14	SR1F: Memory Clock Frequency Programming
6.1.15	STAT: Input Status Register 1
6.1.16	GR0: Set/Reset Register
0.1.10	(CL-GD62XX Extensions)73
6.1.17	GR1: Enable Set/Reset Register (CL-GD62XX Extensions)74
6.1.18	GR5: Mode Register (CL-GD62XX Extensions)75
6.1.19	GR9: Offset Register 0
6.1.20	GRA: Offset Register 177
6.1.21	GRB: Graphics Controller Mode
	Extensions78
6.1.22	CR19: Interlace End
6.1.23	CR1A: Interlace Control80
6.1.24	CR1B: Extended Display Controls81
6.1.25	CR1C: Flat-Panel Interface83
6.1.26	CR1D: Flat-Panel Display Controls85
6.1.27	CR1E: Flat-Panel Shading
6.1.28	CR1F: Flat Panel Modulation Control89
6.1.29	CR20: Power Management Register90
6.1.30	CR21: Power-Down Timer Control92
6.1.31	CR23: Suspend Mode Input Switch Debounce Timer

6.1.32	CR25: CL-GD62XX Part Status Register 94
6.1.33	CR27: CL-GD62XX Part ID Register
6.1.34	CR29: CL-GD62XX Configuration Register
6.1.35	R0X: LCD Timing Register — Horizontal Total for 80-Column and Mode 13h97
6.1.36	R1X: LCD Timing Register — Horizontal Total Enable and 40-Column Horizontal Total
6.1.37	R2X: LCD Timing — LFS Vertical Counter Value Compare
6.1.38	R3X: LCD Timing LFS Vertical Counter Value Compare
6.1.39	R4X: LCD Timing — LFS Vertical Counter Value Compare
6.1.40	R5X: LCD Timing — LFS Vertical Counter Value Compare
6.1.41	R6X: LCD Timing — Overflow (Most-Significant) Bits for LFS Signal Compare
6.1.42	R7X: LCD Timing — Panel Signal Control for Color TFT Panels
6.1.43	R8X: LCD Timing — STN Color Panel Data Format105
6.1.44	R9X: LCD Timing — TFT Panel Data Format106
6.1.45	RAX: LCD Timing — TFT Panel HSYNC Position Control
6.1.46	RBX: LCD Timing — Special Functions for CL-GD6235 Only
6.2	132-Column Alphanumeric Mode
6.2.1	Write Buffer and Display FIFO 109
	Hardware Cursor109
6.4 (Graphics Hardware Cursor 111
	ELECTRICAL SPECIFICATIONS 112
7.1	Absolute Maximum Ratings112
7.2 1	DC Specifications (Digital)113
7.3 I	DC Specifications (Palette DAC)114
7.4	DC Specifications (Frequency Synthesizer)115
7.5	DAC Characteristics
7.5	AC Specifications
7.6.1	List of Waveforms
	PACKAGE DIMENSIONS
	ORDERING INFORMATION 141
9.1	Package Marking Numbering Guide 141

TABLE OF CONTENTS

4

PRELIMINARY DATA BOOK

List of Figures

Figure 2–1.	Typical Memory Clock Filter
Figure 2–2.	Typical Video Clock Filter
Figure 3-1.	RAMDAC Block Diagram
Figure 7-1.	Bus Signal Timing (ISA Bus) 118
Figure 7–2.	BALE Timing (ISA Bus) 119
Figure 7–3.	EROM* Timing (ISA Bus) 120
Figure 7-4.	AEN Timing (ISA Bus) 120
Figure 7–5.	PI Bus Interface Timing 122
Figure 7–6.	CLK1X, CLK2X Timing
-	(Local Bus) 123
Figure 7–7.	Reset Timing (Local Bus)
Figure 7-8.	ADS#, LBA# Timing (Local Bus)
	(Not Pipelined) 125
Figure 7–9.	LBA#, BS16# Timing (Local Bus)
	(Pipelined) 126

Figure 7-10.	BRDY# Delay (Local Bus)127
Figure 7-11.	Read Data Timing (Local Bus) 127
Figure 7–12.	Buffer Control Timing: 16-Bit Cycle ('486 Local Bus)
Figure 7–13.	Display-Memory Bus Read Timing (t = MCLK)
Figure 7–14.	Display-Memory Bus Write Timing
Figure 7-15.	CAS*-Before-RAS* Refresh Timing (Display Memory Bus)133
Figure 7–16.	Reset Timing 134
Figure 7–17.	STN Monochrome and Color-Passive LCD Interface Timing136
Figure 7–18.	TFT, EL, Plasma Color, and Monochrome Single-Scan LCD Interface Timing 138
Figure 7–19.	Frequency Synthesizer Input Clock Waveform

List of Tables

Table 1-1.	Host Interface 15
Table 1-2.	CRT Interface 16
Table 1-3.	LCD Flat Panel Interface
Table 1-4.	Display Memory Interface
Table 1-5.	Power Management Pins
Table 1-6.	Synchronizer/Clock Interface
Table 1-7.	Miscellaneous Pins 18
Table 1-8.	Power and Ground
Table 4-1.	IBM [®] Standard VGA Video
	Modes 48
Table 4–2.	Cirrus Logic Extended CRT Video Modes
Table 4–3.	IBM Standard VGA Video Modes 50
Table 4-4.	Cirrus Logic Extended LCD Video Modes 50
Table 5-1.	VGA Register Port Map51
Table 6-1.	512-Kbyte Memory with 4-Kbyte Granularity and VGA Mapping
Table 6-2.	Typical Power-Down Timer Settings
Table 6–3.	Programming the Graphics Hardware Cursor
Table 7–0.	Output Loading Values
Table 7-1.	Bus Signal Timing (ISA Bus) 117
Table 7–2.	BALE Timing (ISA Bus) 119
Table 7–3.	EROM* Timing (ISA Bus) 120

Table 7-4.	AEN Timing (ISA Bus)
Table 7–5.	PI Bus-Interface Timing
Table 7–6.	CLK1X, CLK2X Timing (Local Bus)123
Table 7–7.	Reset Timing (Local Bus)
Table 7–8.	ADS#, LBA# Timing (Local Bus) (Not Pipelined)125
Table 7–9.	LBA#, BS16# Timing (Local Bus) (Pipelined)
Table 7–10.	BRDY# Delay (Local Bus)127
Table 7–11.	Read Data Timing (Local Bus) 127
Table 7–12.	Buffer Control Timing: 16-Bit Cycle ('486 Local Bus)128
Table 7-13.	Display-Memory Bus Read Timing (tb = MCLK)129
Table 7–14.	Display-Memory Bus Write Timing (tb = MCLK)131
Table 7-15.	CAS*-Before-RAS* Refresh Timing (Display Memory Bus)
Table 7-16.	Reset Timing 134
Table 7-17.	STN Monochrome and Color-Passive LCD Interface Timing
Table 7-18.	TFT Color Single-Scan LCD Interface Timing,
Table 7–19.	Frequency Synthesizer Input Clock Specification139

October 1993

PRELIMINARY DATA BOOK

Revision History

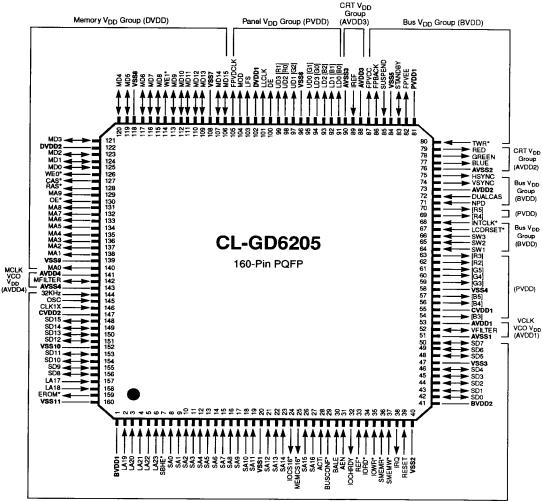
Major changes between the previous version, dated September 1992, and this version are listed below.

General

The major addition to this data book is information specific to the CL-GD6235 device. These additions are labeled as 'CL-GD6235 only', if they do not apply to other devices in the family. Also, the LCD Timing (Shadow) registers (Rxx), that were listed with the CR1D[7] register description, have been broken out into individual register descriptions at the end of Section 6.0.

Specific

Section Revision


The CL-GD6235 is added to the CL-GD6225 pin diagram. One of the filter capacitors in the 1.0 AVDD filter circuit has been changed from '0.1' to '1.0' µF. The Pin Summary Tables for the Host Interfaces has been consolidated into one table. The Output Loading Parameters have been moved from the Pin Summary tables to the Electrical Test section. The detailed pin descriptions have been modified for consistency and to add the pin numbers 2.0 to the individual pins. Information has been added to many of the descriptions. 2.4 The recommended filter circuit components have been changed. The IREE circuit for 3.3V operation has been added. 2.5 The functional description has been modified to add CL-GD6235-specific information. 3.0 Standby and Suspend mode descriptions have been modified for clarity. Also, the power 3.8 sequencing parameters have been changed. The Host Interface Signals table has been included in Section 1.9, Pin Summary. 4.3 The register information has been expanded to include CL-GD6235-specific register data. Reg-6.0 ister descriptions have been added for: CR29 - Configuration register R0X through RBX – LCD Timing registers (these 'Shadow' registers were partially described under the CR1D[7] register description). DC Specifications - the CMOS input-threshold and output-limit specifications have been cor-7.2 rected. An Output Loading table has been added. AC Specifications - many of the tables and waveforms have consolidated to reflect operating 7.6 relationships, and some new parameters have been added to the Memory Read and Write tables. Most of the limits are equal to or tighter than the original data. The STN and TFT panelinterface timing specifications have been modified to reflect more current LCD-industry limits. Package dimensions have been modified slightly to reflect the latest plastic package. 8.0 October 1993 6 REVISION HISTORY PRELIMINARY DATA BOOK

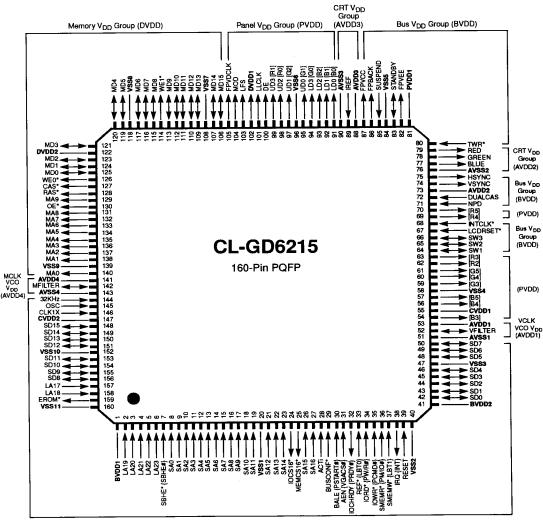
1. PIN INFORMATION

The CL-GD62XX family of VGA controllers is available in a 160-pin plastic quad flat pack device configuration, shown below.

1.1 Pin Diagram for the CL-GD6205

NOTES:

- 1) All pins in '[]' are color TFT data interface pins.
- 2) Power pin signal names are in bold type.


October 1993

PRELIMINARY DATA BOOK

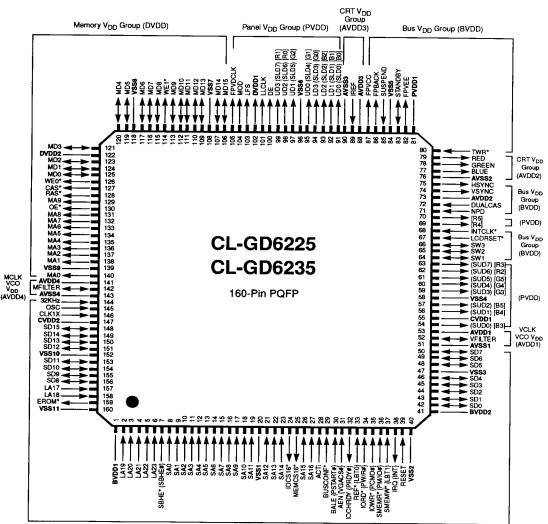
PIN INFORMATION

1.2 Pin Diagram for the CL-GD6215

Bus V_{DD} Group (BVDD)

NOTES:

8


- 1) All pins in '[]' are color TFT data interface pins.
- 2) All pins in '{ }' are PI bus interface pins.
- 3) Power pin signal names are in bold type.

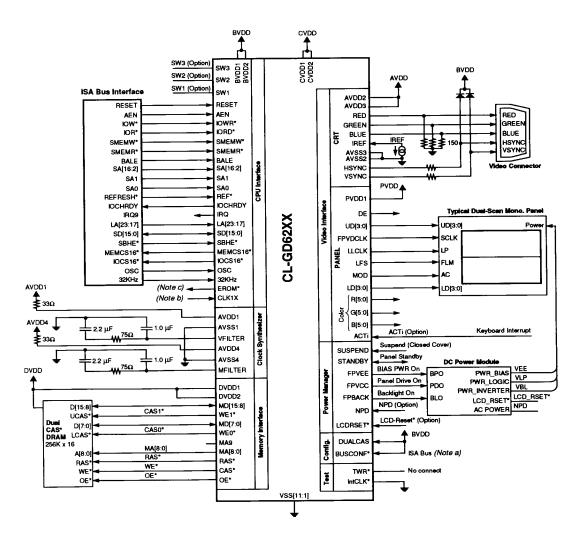
```
PIN INFORMATION
```

```
PRELIMINARY DATA BOOK
```


1.3 Pin Diagram for the CL-GD6225 and CL-GD6235

Bus V_{DD} Group (BVDD)

NOTES:


- 1) All pins in '()' are color STN data interface pins.
- 2) All pins in '[]' are color TFT data interface pins.
- 3) All pins in '{ }' are PI bus interface pins.
- 4) Power pin signal names are in bold type.

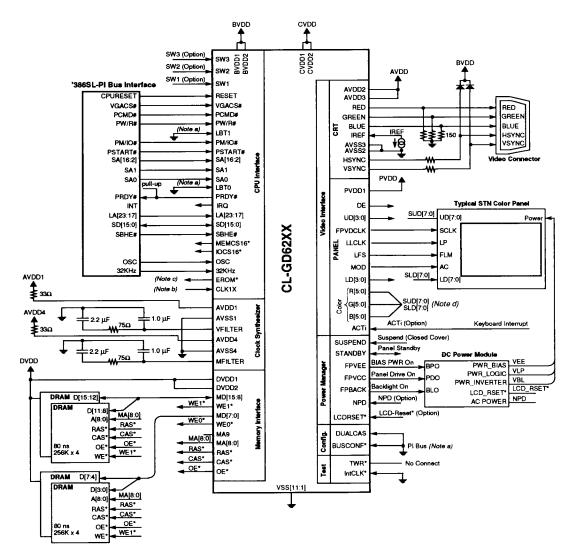
October 1993

PRELIMINARY DATA BOOK

1.4 Typical Dual Monochrome Panel Connections — ISA Bus Using 256K x 16 DRAM with Dual CAS*

NOTES:

- a. Refer to Table 2-1 for bus configuration.
- b. Ground these input signals when not used.
- c. EROM controls the Chip Enable of the 'optional' BIOS EPROMs.


```
10
```

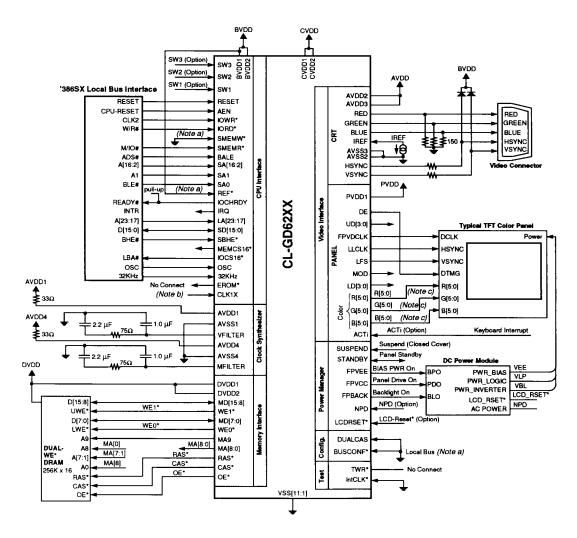
PIN INFORMATION

```
PRELIMINARY DATA BOOK
```


1.5 STN Color Panel Connections — '386SL/'486SL PI Bus Using 256K x 4 DRAMs

NOTES:

- a. Refer to Table 2-1 for bus configuration.
- b. Ground these input signals when not used.
- c. EROM controls the Chip Enable of the 'optional' BIOS EPROMs.
- d. See Panel Interface Connection Tables for specific pin connections.


October 1993

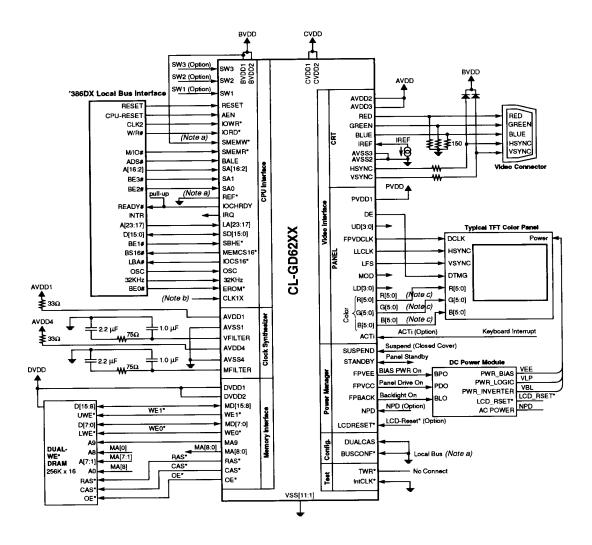
PRELIMINARY DATA BOOK

PIN INFORMATION

1.6 TFT Color Panel Connections — '386SX Local Bus Using 256K x 16 DRAM with Dual WE*

NOTES:

- a. Refer to Table 2-1 for bus configuration.
- b. Ground these input signals when not used.
- c. See Panel Interface Connection Tables for specific pin connections.


12

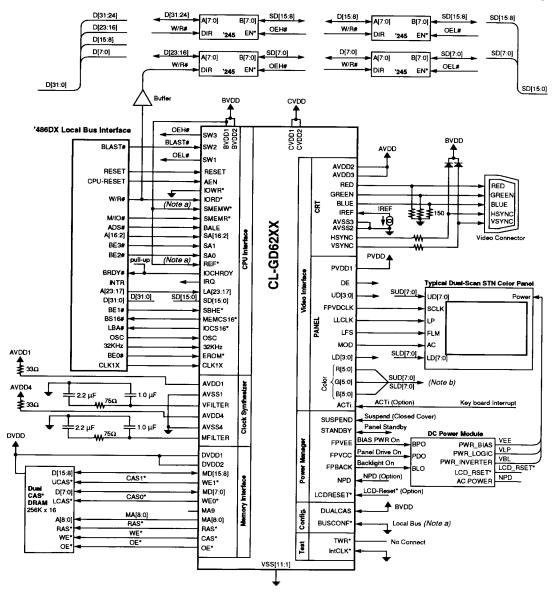
PIN INFORMATION

PRELIMINARY DATA BOOK

1.7 TFT Color Panel Connections — '386DX Local Bus Using 256K x 16 DRAMs with Dual WE*

NOTES:

- a. Refer to Table 2-1 for bus configuration.
- b. Ground these input signals when not used.
- c. See Panel Interface Connection Tables for specific pin connections.


October 1993

PRELIMINARY DATA BOOK

PIN INFORMATION

1.8 Dual-Scan STN Color Panel — '486DX Local Bus/256K x 16 DRAM with Dual CAS*

NOTES:

a. Refer to Table 2-1 for bus configuration.

b. See Panel Interface Connection Tables for specific pin connections.

- 14
- PIN INFORMATION

```
PRELIMINARY DATA BOOK
```


1.9 Pin Summary (See Section 2 for definition of abbreviations used in these tables)

CL-GD62XX Pins '486 '386SL '386SX '386DX ISA Bus Local Bus (PI) Bus Local Bus Local Bus (6205/15/25/ Pin Pin Pin (6215/25/35) (6215/25/35)(6215/25/35)35) (6215/25/35)Number Name Туре LA[23:19] A[23:19] A[23:19] A[23:19] 6:2 LA[23:19] In LA[23:19] A[18:17] A[18:17] 158:157 In LA[18:17] LA[18:17] A[18:17] LA[18:17] A[16:15] A[16:15] A[16:15] SA[16:15] SA[16:15] 27:26 SA[16:15] In A[14:12] 23:21 SA[14:12] SA[14:12] A[14:12] A[14:12] SA[14:12] In A[11:2] In SA[11:2] SA[11:2] A[11:2] A[11:2] 19:10 SA[11:2] BF3# BE3# A[1] 9 SA[1] In SA[1] SA[1] BE2# BE2# BLE# SA[0] SA[0] 8 SA[0] In D[15:12] 1/0 SD[15:12] D[15:12] D[15:12] 148:151 SD[15:12] SD[15:12] D[11:8] D[11:8] D[11:8] 153:156 SD[11:8] 1/0 SD[11:8] SD[11:8] D[7:5] 50:48 SD[7:5] I/O SD[7:5] SD[7:5] D[7:5] D[7:5] 46:42 SD[4:0] I/O SD[4:0] SD[4:0] D[4:0] D[4:0] D[4:0] BE1# 7 SBHE* In SBHE* SBHE# BHE# **BE1#** LBA# IOCS16* oc **IOCS16*** No connect LBA# LBA# 24 oc MEMCS16* No connect No connect BS16# BS16# 25 MEMCS16* 'low' 'low' 'low' 29 BUSCONF* In 'high' 'low' PSTART# ADS# ADS# ADS# BALE BALE In 30 CPU-RESET CPU-RESET CPU-RESET VGACS# AEN In AEN 31 READY# READY# BRDY# **IOCHRDY** 3-S **IOCHRDY** PRDY# 32 Tie to BVDD1 LBTO Tie to BVDD1 Tie to Ground REF* **REFRESH*** 33 In W/R# W/R# PW/R# W/R# IORD* 34 IORD* 1n CLK2 Tie to Ground IOWR* IOWR* PCMD# CLK2 35 In M/1O# M/IO# M/IO# PM/IO# 36 SMEMR* In SMEMR* Tie to BVDD1 Tie to BVDD1 Tie to Ground 37 SMEMW* In SMEMW* LBT1 IRQ Out IRQ9 INT No connect No connect No connect 38 RESET RESET RESET RESET RESET RESET 39 In SW1 I/O No connect SW1 SW1 OEL# No connect 64 No connect SW2 SW2 BLAST# SW2 No connect 65 in SW3 SW3 OEH# SW3 1/0 No connect No connect 66 Tie to Ground INTCLK In 68 Sets Dual-CAS or Dual-WE Memory Interface - See Table 1-4 72 DUALCAS In No connect No connect No connect 80 TWR* In No connect No connect 32KHz 32KHz 32KHz 32KHz 32KHz In 32KHz 144 osc OSC OSC osc OSC OSC 145 In CLK1X 146 CLK1X In No connect No connect No connect No connect BE0# (Note a) (Note a) Tie to Ground BE0# 159 EROM* I/O

Table 1–1. Host Interface

^a If an EPROM is used to load the BIOS, the EROM* pin is an active-'low' output used to control the EPROM Chip Enable.

October 1993

PRELIMINARY DATA BOOK

Table 1–2. CRT Interface

CL-GD62XX Pins					
Pin Pin Number Name		Pin Type	Description		
74	VSYNC	Three-State Out	Vertical synchronization pulse for monitor		
75	HSYNC	Three-State Out	Horizontal synchronization pulse for monitor		
79	RED	Analog Out	Analog current representing Red value of pixel		
78	GREEN	Analog Out	Analog current representing Green value of pixel		
77	BLUE	Analog Out	Analog current representing Blue value of pixel		
89	IREF	Analog In	DAC current reference — sets fullscale DAC output		

Table 1–3. LCD Flat Panel Interface

CL-GD62XX Pins			Monochrome	STN ^{a,b} Color		
Pin Number	Pin Name	Pin Type	Monochrome Panel Pins	Panel Pins	TFT ^b Color Panel Pins	
105	FPVDCLK	Out	FPVDCLK	FPVDCLK	FPVDCLK	
104	MOD	Out	MOD	MOD	MOD	
103	LFS	Three-State	LFS	LFS	LFS	
101	LLCLK	Three-State	LLCLK	LLCLK	LLCLK	
100	DE	Out	DE	N/C	DE	
99	UD3	Out	UD3	SLD7	R1	
98	UD2	Out	UD2	SLD6	R0	
97	UD1	Out	UD1	SLD5	G2	
95	UD0	Out	UD0	SLD4	G1	
94	LD3	Out	LD3	SLD3	G0	
93	LD2	Out	LD2	SLD2	B2	
92	LD1	Out	LD1	SLD1	B1	
91	LD0	Out	LD0	SLDO	BO	
63	SUD7	Out	N/C	SUD7	R3	
62	SUD6	Out	N/C	SUD6	R2	
61	SUD5	Out	N/C	SUD5	G5	
60	SUD4	Out	N/C	SUD4	G4	
59	SUD3	Out	N/C	SUD3	G3	
57	SUD2	Out	N/C	SUD2	B5	
56	SUD1	Out	N/C	SUD1	B4	
54	SUD0	Out	N/C	SUD0	B3	
70	R5	Out	N/C	N/C	R5	
69	R4	Out	N/C	N/C	R4	

a. All '(SLD[7:0])' and '(SUD[7:0])' Signals are present only in the CL-GD6225 and CL-GD6235.

b. For exact pin connections, refer to the panel interface connection tables located in the Panel Interface Guide section of the CL-GD62XX Family Applications Book.

16

PRELIMINARY DATA BOOK

	CL-GD62XX Pins	;	Dual-WE	Dual-CAS	
Pin Pin Number Name		Pin Type	DRAM (DUALCAS = 'low')	DRAM (DUALCAS = 'high')	
129	MA9	Out	MA9 ^a	MA9 ^a	
131	MA8	Out	MA8	MA8	
132	MA7	Out	MA7	MA7	
133	MA6	Out	MA6	MA6	
134	MA5	Out	MA5	MA5	
135	MA4	Out	MA4	MA4	
136	MA3	Out	MA3	MA3	
137	MA2	Out	MA2	MA2	
138	MA1	Out	MA1	MA1	
140	MAO	Out	MA0 ^a	MA0 ^a	
106	MD15	I/O	MD15	MD15	
107	MD14	I/O	MD14	MD14	
109	MD13	I/O	MD13	MD13	
110	MD12	1/0	MD12	MD12	
111	MD11	1/0	MD11	MD11	
112	MD10	I/O	MD10	MD10	
113	MD9	I/O	MD9	MD9	
115	MD8	1/0	MD8	MD8	
116	MD7	I/O	MD7	MD7	
117	MD6	I/O	MD6	MD6	
119	MD5	I/O	MD5	MD5	
120	MD4	1/0	MD4	MD4	
121	MD3	I/O	MD3	MD3	
123	MD2	I/O	MD2	MD2	
124	MD1	I/O	MD1	MD1	
125	MD0	1/0	MD0	MD0	
114	WE1*	Out	WE1*	CAS1*	
126	WE0*	Out	WE0*	CAS0*	
127	CAS*	Out	CAS*	WE*	
128	RAS*	Out	RAS*	RAS*	
130	OE*	Out	OE*	OE*	

Table 1–4. Display Memory Interface

a. MA9 and MA0 are not used to drive column addresses on asymmetrical DRAMs. For a detailed explanation, see Section 5.4 of application note AN-GD30, A Single DRAM LCD Motherboard Solution for Monochrome/Color Notebook Computers.

October 1993

PRELIMINARY DATA BOOK

Table 1–5. Power Management Pins

CL-GD62XX Pins		S				
Pin Number	Pin Name	Pin Type	Description			
87	FPVCC	Out	Panel power-on enable			
86	FPBACK	Out	Backlight power-on enable			
82	FPVEE	Out	BIAS power-on enable			
83	STANDBY	1/0	Standby mode control/standby status			
85	SUSPEND	In	Suspend mode control (close-cover power sequence)			
71	NPD	In	No power-down (disable power-down timers)			
28	ACTI	In	Activity indicator (reset power-down timers)			
67	LCDRSET*	In	LCD reset (initiates power-down sequence)			

Table 1–6. Synchronizer/Clock Interface

CL-GD62XX Pins					
Pin Number	Pin Name	Pin Type	Description		
145	OSC	In	Oscillator input for dual-frequency synthesizer		
144	32KHz	In	Optional 32-kHz clock input for video RAM refresh during Suspend mode		
142	MFILTER	Analog out	Memory clock filter connection		
52	VFILTER	Analog out	Video clock filter connection		

Table 1–7. Miscellaneous Pins

CL-GD62XX Pins		;			
Pin Number	Pin Name	Pin Type	Description		
29	BUSCONF*	In	Bus configuration select (use with REF* and SMEMW*)		
64	SW1	1/0	Programmable input (OEL# for '486 local bus)		
65	SW2	In	Programmable input (BLAST# for '486 local bus)		
66	SW3	I/O	Programmable input (OEH# for '486 local bus)		
68	INTCLK*	In	Internal clock enable		
72	DUALCAS	In	Dual-CAS or dual-WE DRAM select		
80	TWR*	In	Test write enable (used for testing only)		

18

PRELIMINARY DATA BOOK

CL-GD6	2XX Pins	Connect	Bypass	Video Controller Section
Pin Number	PIN Name	to Rail	Capacitor	Serviced by Power Pins
53	AVDD1	VDD(VCC) thru 33 ohms	10 μF to AVSS1	Analog voltage for video clock synthesizer
73	AVDD2	VDD(VCC)	0.1 µF	Analog voltage for palette DAC
88	AVDD3	VDD(VCC)	0.1 µF	Allalog voltage for palette DAC
141	AVDD4	VDD(VCC) thru 33 ohms	10 μF to AVSS4	Analog voltage for memory clock synthesizer
1	BVDD1	VDD(VCC)	0.1 µF	Digital voltage for bus interface section
41	BVDD2	VDD(VCC)	0.1 μF	Digital voltage for bus interface section
55	CVDD1	VDD(VCC)	0.1 μF	Digital voltage for core logic of controller
147	CVDD2	VDD(VCC)	0.1 µF	
102	DVDD1	VDD(VCC)	0.1 µF	Digital voltage for memory interface section
122	DVDD2	VDD(VCC)	0.1 µF	Digital voltage for memory interface section
81	PVDD1	VDD(VCC)	0.1 µF	Digital voltage for LCD panel interface section
51	AVSS1	Analog ground		
76	AVSS2	Analog ground		The analog ground plane should be isolated from the VSS (Digital) ground plane to prevent noise and
90	AVSS3	Analog ground		crosstalk.
143	AVSS4	Analog ground		
20	VSS1	Digital ground		
40	VSS2	Digital ground		
47	VSS3	Digital ground		
58	VSS4	Digital ground		
84	VSS5	Digital ground		
96	VSS6	Digital ground		
108	VSS7	Digital ground]
118	VSS8	Digital ground		
139	VSS9	Digital ground	1	
152	VSS10	Digital ground		
160	VSS11	Digital ground]

October 1993

PRELIMINARY DATA BOOK

2. DETAILED PIN DESCRIPTIONS

These abbreviations are used for pin types in the following sections:

- (I) indicates Input
- (O) indicates Output
- (I/O) indicates either an Input or Output function, depending on the mode.
- (OC) indicates Open-Collector output
- (3-S) indicates three-state output
- (*) and (#) indicate active-'low' function
- Programmable levels '1' and '0' are equivalent to logic levels 'high' and 'low', respectively.

2.1 Host Interface — ISA Bus Mode

Pin Name	Pin No.	Туре	Description					
AEN	31	I	ADDRESS ENABLE: When this input is 'high', it indicates that the current cycle is a DMA cycle. In this case, the CL-GD62XX will not respond to I/O cycles. There is no effect on the memory interface which still performs refresh cycles.					
BALE	30	ł	BUS ADDRESS LATCH ENABLE: Data on the LA[23:17] pins is loaded into the internal address latch while BALE is 'high'. The data on the LA[23:17] pins during the logic 'high'-to-'low' transition of BALE is stored in the address latch.					
BUSCONF*	29	I	BUS CONFIGURATION*: This active-'low' pin is used with REF*(LBT0) and SMEMW*(LBT1) pins to choose the CL-GD62XX host-bus type. Table 2-1 below shows the avail- able host-bus configurations. Table 2–1. Host-Bus Configuration					
			Bus Type	BUSCONF*	REF* (LBT0)	SMEMW* (LBT1)		
			ISA bus 'high' ^a Tie to ISA bus Tie to ISA REFRESH* bus SMEMW					
			'386SL (PI bus) 'low' 'low' 'low'					
			'386SX	'low'	ʻhigh'	'low'		
			'386DX	'low'	'low'	'high'		
			'486SX/DX	'low'	'high'	'high'		

^a For the CL-GD6205, tie BUSCONF* to BVDD.

DETAILED PIN DESCRIPTIONS

20

2.1	Host Interface -	- ISA Bus	s Mode (cont.)	
-----	------------------	-----------	----------------	--

Pin Name	Pin No.	Туре	Description		
IOCHRDY	32	3-S	I/O CHANNEL READY: This output is 'high' during I/O and BIOS read cycles.		
			During a display memory read cycle , this output is alwa driven 'low' as soon as SMEMR* goes 'low'. When the da bits are ready to be placed on the System Data bus, this or put goes 'high'. It remains 'high' until SMEMR* goes 'high' then goes high impedance.		
			the Write Buffer, this out goes 'low'. If the Write E 'low', IOCHRDY is driver is space in the buffer. Thi additional wait states mu play memory read or writ Write Buffer, IOCHRDY g	ry write cycle, if there is space in but is driven 'high' when SMEMW' Buffer is full when SMEMW* goes a 'low' and remains 'low' until there s output, when 'low', indicates tha st be inserted into the current dis e cycle. Once there is space in the oes 'high', and remains 'high', unti hen goes high impedance.	
IOCS16*	24	OC	I/O CHIP SELECT 16*: This open-collector output is driv 'low' to indicate the CL-GD62XX can execute a 16-bit operation at the address currently on the bus. This output generated from a decode of A[15:0] and AEN. Table 2 gives the range of addresses for which IOCS16* will go 'lo In an 8-bit environment, this pin is not connected.		
			Table 2-2. IOCS16* Ad	ldresses	
			Address	Function	
			3C4, 3C5	Sequencer	
			3CE, 3CF	Graphics controller	
			3B4/3D4, 3B5/3D5	CRT controller	
			3BA/3DA	Input Status register 1	
IORD*	34	1	I/O READ*: This active-'low' input is forced 'low' by the hos to request an I/O data transfer. When the address or SA[15:0] is within the range of the CL-GD62XX, the CL-GD62XX will respond by placing the contents of the appropriate register on the System Data bus.		

October 1993

PRELIMINARY DATA BOOK

DETAILED PIN DESCRIPTIONS

2.1 Host Interface — ISA Bus Mode (cont.)

Pin Name	Pin No.	Туре	Description)				
IOWR*	35	I	 I/O WRITE*: This active-'low' input is forced 'low' by the host to initiate an I/O data write to the CL-GD62XX. When the address on SA[15:0] is within the range of the CL-GD62XX, the contents of the System Data bus is written into the addressed register during the logic 'low'-to-'high' transition of IOWR*. A list of I/O addresses that the CL-GD62XX responds to appears in Table 2–2. When a 16-bit I/O write is performed, the specified address is typically the Index register for one of the VGA groups. In this case, the index should appear on SD[7:0], and the data should appear on SD[15:8]. 					
IRQ	38	3-S	an ISA-bus	INTERRUPT REQUEST: This output is typically unused in an ISA-bus design, but it may be connected to IRQ2(IRQ9) if necessary. Register CR11 controls the interrupt function.				
LA[23:17]	6:2 158:157	I	LA ADDRESS [23:17]: These address inputs extend the system address to 24 bits. They are used, along with SA[16:0], to select the resource to be accessed during memory and I/O operations. Data on the LA[23:17] pins is loaded into the internal address latch while BALE is 'high', and is stored in the latch during the logic 'high'-to-'low' transition of BALE.					
MEMCS16*	25	OC	MEMORY CHIP SELECT 16*: This open-collector output is driven 'low' to indicate that the CL-GD62XX can execute a 16-bit memory operation at the address currently on the bus Table 2–3 summarizes the conditions under which MEMCS16* goes 'low'. In an 8-bit environment, this pin is not connected.					
			Resource	Address Bits	6* Addresses Address Range	Qualifier		
			Display Memory	A[23:17]	A000:0-BFFF:F	SR8[6] = 'high' (No other VGA card)		
REF*	33	I	REFRESH*: This active-'low' input is driven 'low' by the host to initiate a DRAM refresh cycle. System memory read operations, occurring when REFRESH* is 'low', are ignored.					
RESET	39	I	RESET: This input is used to initialize the CL-GD62XX. When 'high', it forces all outputs to a high-impedance state, and initializes all registers to their reset state. When RESET goes 'low' normal operation is enabled.					

22

DETAILED PIN DESCRIPTIONS

PRELIMINARY DATA BOOK

2.1 Host Interface --- ISA Bus Mode (cont.)

Pin Name	Pin No.	Туре	Description			
SA[16:0]	27:26 23:21 19:8	Ι	SYSTEM ADDRESS [16:0]: These address inputs are used, along with LA[23:17], to select the resource to be accessed during memory and I/O operations. These address bits are not latched by the CL-GD62XX, and there- fore, <i>must</i> remain stable <i>throughout</i> the cycle.			
SBHE*	7	I	SYSTEM BYTE HIGH ENABLE*: This active-'low' input is used in conjunction with SA[0] to determine the width and alignment of a data transfer. SBHE* and SA[0] are decoded as shown in Table 2–4. In an 8-bit environment, tie SBHE* 'high'.			
			Table 2–4.	SBHE/SA	N[0] Decoding	
			SBHE*	SA[0]	Function	
			'low'	'low'	16-bit transfer	
			'low'	'high'	Upper-byte transfer	
			'high'	'low'	Lower-byte transfer	
SD[7:0]	50:48 46:42	I/O	SYSTEM DATA [7:0]: These bi-directional pins are used to transfer data during memory or I/O operations. These pins may be connected directly to the corresponding ISA bus			
SD[15:8]	148:151 153:156	I/O	to transfer These pins ISA bus pin	pins. SYSTEM DATA [15:8]: These bi-directional pins are used to transfer data during 16-bit memory or I/O operations. These pins may be connected directly to the corresponding ISA bus pins. The SD[15:8] pins have internal pull-up resis- tors to guarantee a valid input level when not connected.		
SMEMR*	36	I	SYSTEM MEMORY READ*: This active-'low' input is forced 'low' by the host to initiate a data transfer (read) from the CL-GD62XX to system memory. When a BIOS read is occurring, which is determined by decoding A[23:15], the EROM* output goes 'low' when SMEMR* is 'low'.			
SMEMW*	37	I	forced 'low system me in the write	' by the hos mory to the a latch on th	WRITE*: This active-'low' input is t to initiate a data transfer (write) from CL-GD62XX. The data bits are stored he logic 'low'-to-'high' transition of this to display memory later.	

October 1993

PRELIMINARY DATA BOOK

DETAILED PIN DESCRIPTIONS 23

2.2 Host Interface --- '386SL/'486SL (PI Bus Mode) (CL-GD6215/'25/'35 only)

Pin Name	Pin No.	Туре	e Description				
BUSCONF*	29	I	BUS CONFIGURATION*: This active-'low' pin is used the REF*(LBT0) and SMEMW*(LBT1) pins to choose CL-GD62XX host-bus type. The following table shows to use this pin for the '386SL/'486SL (PI) bus, which is supported by the CL-GD6215/'25/'35.			to choose the ble shows how	
			Table 2–5. B	us Type Confi	guration		
			Bus Type	BUSCONF*	LBT0 (REF*)	LBT1 (SMEMW*)	
			PI bus	'low'	'low'	'low'	
IRQ	38	3-S	INTERRUPT REQUEST: This output is typically unused in a PI-bus design, but it may be connected to the INT input if necessary. Register CR11 controls the interrupt function.				
LA[23:17]	6:2 158:157	I	LOCAL ADDRESS [23:17]: The PI bus shares these local address inputs with the ISA bus. These inputs provide a path between the '386SL/'486SL CPU and the VGA subsystem.				
PCMD#	35	I	PI-BUS COMMAND#: The host drives this input 'low' to indicate that a valid PI-bus cycle is in progress.				
PM/IO#	36	I	PI-BUS MEMORY–I/O SELECT#: This input, along with PW/R#, indicates the type of access currently being executed. A 'high' on PM/IO# indicates a memory cycle, while a 'low' on PM/IO# indicates an I/O cycle. PM/IO# is sampled during the 'low'-to-'high' transition of PSTART# for PI-bus transfers.				
PRDY#	32	3-S	PI-BUS READY#: This active-'low' output terminates a bus cycle. The PI bus is normally not ready, and a bus cycle will continue until PRDY# goes 'low'. To guarantee cycle termination, PRDY# <i>must</i> remain 'low' until the logic 'low'-to-'high' transition of PCMD#.				
PSTART#	30	I	PI-BUS START#: This active-'low' input indicates to the CL-GD62XX the start of the PI-bus cycle. Address and status inputs are latched during the logic 'high'-to-'low' transition.			ddress and sta-	

DETAILED PIN DESCRIPTIONS

24

PRELIMINARY DATA BOOK

2.2 Host Interface --- '386SL/'486SL (PI Bus Mode) (CL-GD6215/'25/'35 only) (cont.)

Pin Name	Pin No.	Туре	Description				
PW/R#	34	I	PI BUS WRITE/READ#: This input, along with PM/IO#, indicates the type of access currently being executed. A 'high' on PW/R# indicates a write access, while a 'low' on PW/R# indicates a read access. PW/R# is sampled during the logic 'low'-to-'high' transition of PSTART# for PI-bus transfers.				
RESET	39	I	RESET: This input is used to initialize the CL-GD62XX. When 'high', it forces all outputs to a high-impedance state and initializes all registers to their reset state. When RESET goes 'low', normal operation is enabled.				
SA[16:0]	27:26 23:21 19:8	I	SYSTEM ADDRESS [16:0]: The PI bus shares these address inputs with the ISA bus. These inputs provide normal addressing on the PI bus, and are connected to '386SL/'486SL CPU outputs during PI-bus cycles.				
SBHE#	7	I	SYSTEM BYTE HIGH ENABLE#: This active-'low' input is used in conjunction with SA[0] to determine the width and alignment of a data transfer. SBHE* and SA[0] are decoded as shown in Table 2–6. This input is latched when PCMD# is 'low'.				
			Table 2–6.	SBHE#/SA	[0] Decoding		
			SBHE#	SA[0]	Function		
			'low'	'low'	16-bit transfer		
			'low'	'high'	Upper-byte transfer		
			'high'	'low'	Lower-byte transfer		
SD[15:0]	156:153 151:148 50:48, 46:42	I/O	SYSTEM DATA [15:0]: These bi-directional pins are used to transfer 16-bit data during a memory or I/O operation.				
VGACS#	31	I	VGA CHIP SELECT#: This active-'low' input is driven 'low' by the host when an access occurs to a user-defined VGA- memory address space. VGACS# is driven 'low' whether memory space has been defined for the ISA bus or the PI bus. This input is driven 'high' during VGA I/O accesses.				

October 1993

PRELIMINARY DATA BOOK

DETAILED PIN DESCRIPTIONS

2.3 Host Interface — Local Bus (CL-GD6215/'25/'35 only)

Several bus interface pins are redefined according to the local bus type that the CL-GD6215/25/35 is connected. Both the '386SX and '386DX/'486 local bus pin names and descriptions are shown. For the equivalent CL-GD62XX pin names, refer to Table 1–1.

Pin Name	Pin No.	Туре	Local Bus Name/Description
A[1] BE3#	9	Ι	ADDRESS [1]: For the '386SX this active-'low' signal is con- nected directly to the corresponding '386SX byte enable output. BYTE ENABLE 3#: For the '386DX and the '486 this active- 'low' input is connected directly to the corresponding CPU byte enable output.
A[16:2]	27:26 23:21 19:10	I	ADDRESS [16:2]: These inputs are used to select the re- source to be accessed during memory or I/O operations.
A[23:17]	6:2 158:157	I	ADDRESS [23:17]: These inputs are used to select the re- source to be accessed during memory or I/O operations.
ADS#	30	I	ADDRESS STROBE#: This active-'low' input indicates that a new cycle has begun. It <i>must</i> be connected directly to the ADS# pin on the CPU.
BE0#	159	I	BYTE ENABLE 0#: For the ' 386DX and the ' 486 , this active-'low' input is connected directly to the ' 386DX /' 486 BE0# pin. For the ' 386SX this pin is unused and <i>must</i> be tied to ground.
BHE#	7	Ι	BYTE HIGH ENABLE#: For the '386SX, this active-'low' input is connected directly to the corresponding '386SX high-byte enable output.
BE1#			BYTE ENABLE 1#: For the ' 386DX and the ' 486 , this active-'low' input is connected directly to the corresponding CPU byte enable output.
BLE#	8	I	BYTE LOW ENABLE: For the '386SX, this active-'low' signal is connected directly to the corresponding '386SX low-byte enable output.
BE2#			BYTE ENABLE 2#: For the ' 386DX and the ' 486 , this active-'low' input is connected directly to the corresponding CPU byte enable output.

26

DETAILED PIN DESCRIPTIONS

2.3 Host Interface — Local Bus (CL-GD6215/'25/'35 only) (cont.)

Pin Name	Pin No.	Туре	Local Bus Na	ame/Descripti	on	
BS16#	25	OC	'386DX/'486 I to indicate t resource. Th	ocal bus. It is d hat the curre e '386DX/'486 number of 16-t	re-'low' output riven by the CL- nt cycle addre 6 will convert t bit transfers. Th	GD6215/'25/'35 esses a 16-bit he cycle to ar
BUSCONF*	29	I	REF*(LBT0)	and SMEMW host-bus type.	: This input is /*(LBT1) pins Table 2–7 shov	to choose the
			Table 2–7. I	Host Bus Con	figurations	
			Bus Type	BUSCONF*	REF* (LBT0)	SMEMW* (LBT1)
			'386SX	'low'	'high'	'low'
			'386DX	'low'	'low'	'high'
			'486SX/DX	'low'	'high'	'high'
CLK2	35	Ι	bus, this input	is the timing re	d to the '386SX ference for the o d to ground (see	device. In a '486
CLK1X	146	I	it is connecte nected direct available from and tied to the be less than 2	d to a ' 486 loc y to the CLK1X the ' 486 , the e device CLK1 ns.	g reference for t cal bus. This pir (pin of the '486 CLK2X can be X pin, but the c unused and mu	n <i>must</i> be con- . If no CLK1X is divided by two lock skew must
CPU-RESET	31	I	the CL-GD62 pin <i>must</i> be o	15/'25/'35 to th connected to the	is input is used ne CPU. In a ' 3 he '386 CPU-Ri 5/'25/'35 to CLK2	86 system, this ESET output to
D[15:0]	156:153 151:148 50:48 46:42	I/O	data during an '386DX local l to D[15:0]. For connected via ceivers are co	ny memory or I ous system, the r the '486 32-b a bi-directional ontrolled with S	tional pins are u /O operation. In ese pins are con it local data bus I data transceiv W3 (OEH#), SV on 1.8 for schem	a '386SX or inected directly , these pins are ers. The trans- V1 (OEL#), and

October 1993

PRELIMINARY DATA BOOK

DETAILED PIN DESCRIPTIONS

2.3 Host Interface — Local Bus (CL-GD6215/'25/'35 only) (cont.)

Pin Name	Pin No.	Туре	Local Bus Name/Description
IRQ	38	3-S	INTERRUPT REQUEST: This output is typically unused in a local-bus design, but it may be connected to the INTR input if necessary. Register CR11 controls the interrupt function.
LBA#	24	OC	LOCAL BUS ACKNOWLEDGE#: This open-collector output is driven 'low' to indicate that the CL-GD6215/'25/'35 will respond to the current cycle. This signal is generated from a decode of the CPU output signals, A[23:2] and M/IO#. This output will be 'low' before the middle of the first timing (T2) cycle after ADS# goes 'low'.
M/IO#	36	1	MEMORY / IO : This input indicates whether a memory or I/O operation is to occur. It <i>must</i> be connected directly to the M/IO# pin on the CPU. When M/IO# is 'high', a memory operation will occur. When M/IO# is 'low', an I/O operation will occur.
READY#	32	I/O	READY#: For the ' 386 this signal is defined as READY#. It <i>must</i> be connected directly to the READY# pin of the '386. This active-'low' Input is used to track bus activity for pipe-lined cycles. It is used as an output to terminate a CL-GD6215/'25/'35 cycle. The pin <i>must</i> be connected to a pull-up resistor.
BRDY#		0	BURST READY# : For the '486, this signal is redefined as BRDY#. It <i>must</i> be connected directly to the BRDY# pin of the '486. On the '486, this active-'low' output is used to terminate a CL-GD6215/'25/'35 cycle. The pin <i>must</i> be connected to a pull-up resistor.
RESET	39	I	RESET: This input is used to initialize the CL-GD62XX. When 'high', it forces all outputs to a high-impedance state and initializes all registers to their reset state. When RESET goes 'low', normal operation is enabled.
SW1# OEL#	64	I/O	SWITCH 1: On any bus, except the '486 local bus, this active-'low' input can be used as an optional input that can be read under register control. OUTPUT ENABLE LOW#: On the '486 local bus, this active-'low' output controls the output enables for the data transceivers that connect the CL-GD6215/'25/'35 SD[15:0] pins to the '486 D[15:0] pins.

28

DETAILED PIN DESCRIPTIONS

Pin Name	Pin No.	Туре	Local Bus Name/Description
SW2#	65	Ι	SWITCH 2: On any bus, except the '486 local bus, this active-'low' input can be used as an optional input that can be read under register control.
BLAST#			BURST LAST#: On the '486 local bus, this pin is used to determine when the end of a burst cycle occurs. It <i>must</i> be connected to the BLAST# pin of the CPU.
SW3#	66	I/O	SWITCH 3: On any bus, except the '486 local bus, this active-'low' Input can be used as an optional input that can be read under register control.
OEH#			OUTPUT ENABLE HIGH#: On the ' 486 local bus, this active-'low' output controls the output enables for the data transceivers that connect the CL-GD6215/'25/'35 SD[15:0] pins to the '486 D[31:16] pins.
W/R#	34	1	WRITE/READ#: This input indicates whether a write or read operation is selected by the CPU. It <i>must</i> be connected directly to the W/R# pin on the CPU. When W/R# is 'high', a write will occur; when WR# is 'low', a read will occur.

2.3 Host Interface — Local Bus (CL-GD6215/'25/'35 only) (cont.)

2.4 Dual-Frequency Synthesizer Interface

Pin Name	Pin No.	Туре	Description		
32KHz	144	1	32KHz: This input may be connected to an externally supplied 32-kHz clock signal to be used for memory refresh during Suspend mode. If not used, this pin should be tied to ground.		
MFILTER	142	0	MEMORY CLOCK FILTER: This pin <i>must</i> be connected to a π -RC filter, which is returned to AVSS4. The filter compo- nents, especially the input capacitor and the resistor, <i>must</i> be placed as close as possible to the MFILTER pin.		
			Figure 2–1. Typical Memory Clock Filter		

October 1993

PRELIMINARY DATA BOOK

DETAILED PIN DESCRIPTIONS 29

2.4 Dual-Frequency Synthesizer Interface (cont.)

Pin Name	Pin No.	Туре	Description
OSC	145	I	OSCILLATOR INPUT: This TTL input pin supplies the reference frequency for the dual-frequency synthesizer. It requires an input frequency of 14.31818 MHz \pm 0.01% with a duty cycle of 50% \pm 10%. This input can be supplied from the appropriate pin on the ISA bus, or from an oscillator.
VFILTER	52	0	VIDEO CLOCK FILTER: This pin <i>must</i> be connected to a π -RC filter, which is returned to AVSS1. The filter components, especially the input capacitor and the resistor, <i>must</i> be placed as close as possible to the VFILTER pin.
			Figure 2–2. Typical Video Clock Filter

2.5 CRT Interface

Pin Name	Pin No.	Туре	Description
BLUE	77	0	BLUE VIDEO: This analog output supplies current corresponding to the blue value of the pixel being displayed. Each of the three DACs consists of 255 summed current sources. For each pixel, the 6-bit value from the Look-up table is applied to each DAC input to determine the number of current sources to be summed. Full-scale current on the RED, GREEN, and BLUE outputs is related to IREF as follows:
			I _{full} = (63/31) x IREF
			To maintain IBM VGA-compatibility, each DAC output is typ- ically terminated to monitor ground with a 150- Ω , 2% resis- tor. This resistor, in parallel with the 75- Ω resistor in the mon- itor, will yield a 50- Ω impedance to ground. For a full-scale voltage of 700 mV, the full-scale current output should be 14 mA.
GREEN	78	0	GREEN VIDEO: This analog output supplies current corresponding to the green value of the pixel being displayed. See the description above of BLUE VIDEO for information regarding the termination of this pin.

DETAILED PIN DESCRIPTIONS

PRELIMINARY DATA BOOK

2.5 CRT Interface (cont.)

Pin Name	Pin No.	Туре	Description
HSYNC	75	3-S	HORIZONTAL SYNC: This output supplies the horizontal synchronization pulse to the monitor. The polarity of this output is programmable. This pin may be connected directly to the corresponding pin on the monitor connector.
IREF	89	I	DAC CURRENT REFERENCE: The current drawn from AVDD2/AVDD3 through this pin determines the full-scale output of each DAC. This pin should be connected to a constant-current source (typically 6.9 mA). See Application Alert AA-GD3, <i>IREF Current Source for the CL-GD62XX</i> .
Example:			

				-
V _{CC} /V _{DD}	R _{SET} ±1%	R ₁ ± 1%	Diode CR ₁	
5.0 Volts	22.1 Ω	200 Ω	1N4148 or equivalent	
3.3 Volts	15 Ω	121 Ω	Schottky Diode (V _F < 0.4V)	
RED	79	0	sponding to the red v	nalog output supplies current corre- alue of the pixel being displayed. See ve of BLUE VIDEO for information tion of this pin.
VSYNC	74	3-S	chronization pulse to is programmable. This	his output supplies the vertical syn- the monitor. The polarity of this output s pin may be connected directly to the the monitor connector.

October 1993

PRELIMINARY DATA BOOK

......

2.6 Display Memory Interface

Pin Name	Pin No.	Туре	Description
CAS*	127	0	COLUMN ADDRESS STROBE*: This active-'low' output is used to latch the column address from MA[9:0] into the DRAMs. When DUALCAS [pin 72] is 'low' (dual-WE DRAMs), this pin is defined as CAS*, and must be con- nected to the CAS* inputs of the DRAMs. When DUALCAS = 'high', this pin is defined as WE*, and is connected to the WE* inputs of the DRAMs.
DUALCAS	72	I	DUALCAS: This input is used to select between a dual- CAS-type DRAM and a dual-WE-type DRAM. When DUAL- CAS = 'low' (dual-WE DRAMs), pin 114 is defined as WE1*. pin 126 is defined as WE0*, and pin 127 is defined as CAS*. When DUALCAS = 'high' (dual-CAS DRAMs), pin 114 is defined as CAS1*, pin 126 is defined as CAS0*, and pin 127 is defined as WE*.
MA[9:0]	129 131:138 140	0	MEMORY ADDRESS [9:0]: These outputs drive the address inputs of the DRAMs, and must be connected to their corresponding address pins. MA[0] and MA[8] are often swapped to make the interface to symmetric and asymmetric DRAMs consistent. On asymmetrical DRAMs, MA[0] and MA[9] are only used to drive row addresses (not column addresses). For a detailed explanation, see Section 5.4 of Application Note AN-GD30, A Single DRAM LCD Motherboard Solution for Monochrome/Color Notebook Computers.
MD[15:0]	106:107, 109:113, 115:117 119:121, 123:125	I/O	MEMORY DATA [15:0]: These pins are used to transfer data between the CL-GD62XX and the display memory. These pins must be connected to the data pins of the DRAMs.
OE*	130	0	OUTPUT ENABLE*: This active-'low' output is used to control the DRAM Output Enables. For 256K x 4 DRAMs and 256K x 16 DRAMs with Dual-write Enables, this pin must be connected to the OE* pins of all the DRAMs in the display memory array.
RAS*	128	0	ROW ADDRESS STROBE*: This active-'low' output is used to latch the row address from MA[9:0] into the DRAMs. This pin must be connected to the RAS* pins of all the DRAMs in the display memory array.

32 DETAILED PIN DESCRIPTIONS

PRELIMINARY DATA BOOK

2.6 Display Memory Interface (cont.)

Pin Name	Pin No.	Туре	Description
WE[1:0]*	114, 126	0	WRITE ENABLE [1:0]*: These active-'low' outputs are used to control the WE* or CAS* inputs of the DRAMs, depending on the state of the DUALCAS input. When DUALCAS [pin 72] = 'low' (dual-WE DRAMs), these pins are defined as WE[1:0]*, and are connected to the WE1* and WE0* inputs of the display memory array.
			When DUALCAS = 'high' (dual-CAS DRAMs), these pins are defined as CAS[1:0]*, and are connected to the CAS1* and CAS0* inputs of the display memory array.

2.7 Miscellaneous Pins

Pin Name	Pin No.	Туре	Description
EROM*	159	0	ENABLE ROM*: This is a multi-use pin that is configured differently for each host bus. When the ISA or PI bus is selected, EROM* is an active-'low' output gated with SMEMR* to control the Output Enable pins of up to two 8-bit bus drivers. These drivers are used to connect the data pins of the 'optional' BIOS EPROMs to the system data bus. This output goes active only for memory read cycles to the Address Range C000:0 through C7FF:F.
BE0#		Ι	BYTE ENABLE 0#: When the local bus for the '386DX or '486 is selected, this pin is defined as the active-'low' BE0# input, which is connected to the BE0# output of the CPU. This pin is not used with the '386SX local bus. The EROM* output is forced to high-impedance when RESET is 'high'.
INTCLK*	68	I	INTERNAL CLOCK*: This input may be set 'high' at Reset, so that externally supplied clocks can be used for testing. This pin should normally be connected to ground for internal voltage-controlled oscillator operations.
SW1#	64	I/O	SWITCH 1: On any bus, except the '486 local bus, this active-'low' input can be used as an optional input readable under register control.
OEL#			OUTPUT ENABLE LOW#: On the ' 486 local bus, this active-'low' output controls the output enables for the data transceivers that connect the CL-GD6215/'25/'35 SD[15:0] pins to the '486 D[15:0] pins.

October 1993

PRELIMINARY DATA BOOK

DETAILED PIN DESCRIPTIONS

2.7 Miscellaneous Pins (cont.)

Pin Name	Pin No.	Туре	Description
SW2#	65	l	SWITCH 2: On any bus, except the '486 local bus, this active-'low' Input can be used as an optional input that can be read under register control
BLAST#			BURST LAST#: On the '486 local bus, this input is used to determine when the end of a burst cycle occurs. It <i>must</i> be connected to the BLAST# pin of the CPU.
SW3#	66	I/O	SWITCH 3: On any bus, except the '486 local bus, this active-'low' Input can be used as an optional input that can be read under register control.
OEH#			OUTPUT ENABLE HIGH#: On the '486 local bus, this active-'low' output controls the output enables for the data transceivers that connect the CL-GD6215/'25/'35 SD[15:0] pins to the '486 D[31:16] pins.
TWR*	80	I	TEST WRITE*: This active-'low' input is for factory testing and <i>must not be connected</i> to the system for normal oper- ation. It has internal pull-up resistors.

2.8 Power Management Pins

Pin Name	Pin No.	Туре	Description
ACTi	28	I	ACTIVITY: This pin is an optional activity-sense input. Any logic 'low'-to-'high' transition on this input may be used, with register masking, to reset the internal power-down timers. When not used, connect ACTi to ground.
FPBACK	86	0	FLAT PANEL BACKLIGHT: This output is part of the panel power sequencing. It should be connected to the panel backlight enable.
FPVCC	87	0	FLAT PANEL VCC: This output is part of the panel power sequencing. It should be connected to the panel logic power enable.
FPVEE	82	0	FLAT PANEL VEE: This output is part of the panel power sequencing. It should be connected to the panel power enable.

DETAILED PIN DESCRIPTIONS

34

2.8 Power Management Pins (cont.)

Pin Name	Pin No.	Туре	Description
LCDRSET*	67	I	LCD RESET*: This active-'low' signal is an optional LCD- display reset input. Any logic 'high'-to-'low' transition on this input will clear both the LCD and CRT Enable bits in the Power Management register (CR20[6:5]). This will initiate the LCD-panel power-down sequence, and stop video mem- ory refresh.
			The logic 'low'-to-'high' transition on this pin does not restore the CRT or LCD Enable bits. These bits must be restored by writing to the appropriate registers. This input has an internal pull-up resistor. When LCDRSET* is not used, it should not be connected.
NPD	71	I	NO POWER DOWN: This input can be used to indicate the presence of AC power. When NPD is 'high', the internal power-down timers will be stopped and prevented from initiating a panel power-down sequence. When this input goes 'low', the timers will resume. This pin has an internal pull-down resistor, and may be left disconnected if not used.
STANDBY	83	I/O	STANDBY: This pin can be programmed to be an input or an output with register CR20[7]. When programmed as an Input , CR20[7] = '0', it is the hardware control for the Standby mode. When STANDBY goes 'high', the power- down sequence that starts the Standby mode is initiated. When programmed as an output , CR20[7] = '1', it indicates the Standby mode status; when 'high', the CL-GD62XX is in Standby mode.
SUSPEND	85	ł	SUSPEND: This input is programmable in polarity, SR8[3], and is monitored by an internal timer, CR21[3:0], for debounce. It can be used to initiate hardware-Suspend mode or turn off the flat-panel display. The hardware-Suspend mode is the most efficient power-saving mode for the system. The default polarity is active-'high'.

October 1993

PRELIMINARY DATA BOOK

DETAILED PIN DESCRIPTIONS 35

......

2.9 LCD Flat Panel Interface

The LCD flat-panel interface is panel and CL-GD62XX controller dependent.

NOTE: Refer to the Cirrus Logic Flat Panel Interface Connection Table in the CL-GD62XX Applications Book for specific panel-connection information. Also, see Table 1–3 for panel-vs.-pin cross references.

Pin Name	Pin No.	Туре	Description
B[5:0]	57:56 54 93:91	0	BLUE BITS [5:0]: These bits contain BLUE color data for TFT color flat panels. Refer to NOTE above.
DE	100	0	DISPLAY ENABLE: For those flat panels that require an external display enable, this pin is used to provide a data enable. For the CL-GD6225/'35 it is the second Shift Clock output for STN single-scan dual-clock color panels.
FPVDCLK	105	0	FLAT PANEL VIDEO CLOCK: This signal is used to drive the flat panel shift clock which is designated as CP2 by some panel manufacturers.
G[5:0]	61:59 97 95:94	0	GREEN BITS [5:0]: These bits contain GREEN color data for TFT color flat panels. Refer to NOTE above.
LD[3:0]	94:91	0	LOWER DATA [3:0]: The Lower Data bits [3:0] are typically used with monochrome dual-scan flat panels to provide 4-bit parallel data for the lower portion of the panel.
LFS	103	0	LCD FRAME START: This output provides a pulse to start a new frame on flat panels.
LLCLK	101	0	LCD LINE CLOCK: This output is used to drive the LCD- panel line clock. This signal is also designated as LP or CP1 by some panel manufacturers.
MOD	104	0	MODULATION: This output provides AC inversion. It should be connected to the MOD, FR or DF inputs of the panel, as is appropriate. Some panel manufacturers provide this function in the panel circuitry.
R[5:0]	70:69 63:62 99:98	0	RED BITS [5:0]: These bits contain RED color data for TFT color flat panels. Refer to NOTE above.
SLD[7:0]	99:97 95:91	0	STN LOWER DATA [7:0]: The Lower Data bits [7:0] are for use with color STN LCD panels and are available only on the CL-GD6225/'35.

DETAILED PIN DESCRIPTIONS

36

PRELIMINARY DATA BOOK

Pin Name	Pin No.	Туре	Description		
SUD[7:0] 63:59 O 57:56 54		0	STN UPPER DATA [7:0]: The Upper Data bits [7:0] are for use with color STN LCD panels, and are available only on the CL-GD6225/'35.		
UD[3:0]	99:97 95	0	UPPER DATA [3:0]: The Upper Data bits [3:0] are typically used with monochrome dual-scan flat panels to provide 4-bit parallel data for the upper portion of the panel.		

2.9 LCD Flat Panel Interface (cont.)

2.10 Power And Ground Pins

Pin Name	Pin No.	Туре	Description
AVDD1	53	Power	ANALOG VDD (VCLK): This pin is used to supply +3.3V or +5.0V to the video clock synthesizer of the CL-GD62XX. The same voltage as CVDD <i>must</i> be used. This pin <i>must</i> be connected to the VCC rail via a $33-\Omega$ resistor and bypassed to AVSS1 with 0.1-µF and 10-µF capacitors.
AVDD2 AVDD3	73 88	Power	ANALOG VDD (DAC): These two pins are used to supply +3.3V or +5.0V to the palette DAC of the CL-GD62XX. Both pins <i>must</i> be connected to the same voltage as CVDD. Each pin <i>must</i> be connected directly to the VCC rail and bypassed with $0.1-\mu$ F and $10-\mu$ F capacitors, with proper high-frequency characteristics, placed as close to the pin as possible. When a multi-layer board is used, connect each AVDD pin to the power plane.
AVDD4	141	Power	ANALOG VDD (MCLK): This pin is used to supply +3.3V or +5.0V to the memory clock synthesizer of the CL-GD62XX. The same voltage as CVDD <i>must</i> be used. This pin <i>must</i> be connected to the VCC rail via a 33- Ω resistor and bypassed to AVSS4 with 0.1- μ F and 10- μ F capacitors.
AVSS1	51	Ground	ANALOG VSS (VCLK): This pin is used to supply ground reference to the video clock synthesizer of the CL-GD62XX. This pin <i>must</i> be connected to the analog ground rail, which should be isolated from VSS (digital) ground.
AVSS2 AVSS3	76 90	Ground	ANALOG VSS (DAC): These two pins are used to supply ground reference to the palette DAC of the CL-GD62XX. Each pin <i>must</i> be connected to the analog ground rail, which should be isolated from VSS (digital) ground.

October 1993

PRELIMINARY DATA BOOK

DETAILED PIN DESCRIPTIONS

.....

2.10 Power And Ground Pins (cont.)

Pin Name	Pin No.	Туре	Description
AVSS4	143	Ground	ANALOG VSS (MCLK): This pin is used to supply ground reference to the memory clock synthesizer of the CL-GD62XX. This pin <i>must</i> be connected to the analog ground rail, which should be isolated from VSS (digital) ground.
BVDD1 BVDD2	1 41	Power	BUS VDD: These two pins are used to supply +3.3V or +5.0V to the bus interface pin group of the CL-GD62XX. Both pins <i>must</i> be connected to the same voltage. Each pin <i>must</i> be connected directly to the VCC rail. Each pin <i>must</i> be bypassed with a 0.1- μ F capacitor with proper high-frequency characteristics, as close to the pin as possible. When a multi-layer board is used, connect each VDD pin to the power plane.
CVDD1 CVDD2	55 147	Power	CORE VDD: These two pins are used to supply +3.3V or +5.0V to the internal core logic of the CL-GD62XX. Each pin <i>must</i> be connected directly to the VCC rail. Each pin <i>must</i> be bypassed with a $0.1-\mu$ F capacitor with proper high-frequency characteristics, as close to the pin as possible. When a multi-layer board is used, connect each VDD pin to the power plane.
DVDD1 DVDD2	102 122	Power	DRAM VDD: These two pins are used to supply $+3.3V$ or $+5.0V$ to the internal DRAM interface pin group of the CL-GD62XX. Each pin <i>must</i> be connected directly to the VCC rail. Each pin <i>must</i> be bypassed with a 0.1 -µF capacitor with proper high-frequency characteristics, as close to the pin as possible. When a multi-layer board is used, connect each VDD pin to the power plane.
PVDD1	81	Power	PANEL VDD: This pin is used to supply +3.3V or +5.0V to the LCD flat panel interface pin group of the CL-GD62XX. This pin <i>must</i> be connected directly to the VCC rail. This pin <i>must</i> be bypassed with a 0.1- μ F capacitor with proper high-frequency characteristics, as close to the pin as possible. When a multi-layer board is used, connect this VDD pin to the power plane.
VSS1-VSS11	20, 40, 47, 58, 84, 96, 108, 118, 139, 152, 160	Ground	VSS (Digital) Ground: These 11 pins are used to supply ground reference for the core logic and pin groups of the CL-GD62XX. Each pin <i>must</i> be connected directly to the ground rail. When a multi-layer board is used, each VSS pin <i>must</i> be connected to the ground plane.

38

DETAILED PIN DESCRIPTIONS

3. FUNCTIONAL DESCRIPTION

This section provides functional information and design guidelines on chip resources and interfaces to the CL-GD62XX VGA controllers.

3.1 General

The CL-GD62XX family of VGA controllers offers a complete solution for LCD VGA subsystems. All of the hardware necessary for CPU updates to memory, screen refresh, and DRAM refresh is included in the CL-GD62XX. With any family member, a VGA motherboard solution can be implemented with only one 256K x 16 DRAM.

3.2 Functional Blocks

The following functional blocks have been integrated into the CL-GD62XX:

3.2.1 CPU Interface

The CL-GD62XX connects directly to the ISA bus, '386/'486SL PI bus, or '386 and '486 local bus (CL-GD6215/25 only). No glue logic is required. The CL-GD62XX internally decodes a 16- or 24-bit address and responds to the applicable control lines. It executes both I/O accesses and memory accesses as either an 8- or 16-bit device.

3.2.2 CPU Write Buffer

The CPU Write Buffer contains a queue of CPU write accesses to display memory that have not been executed because of memory arbitration. Maintaining a queue allows the CL-GD62XX to release the CPU as soon as it has recorded the address and data, and to execute the operation when display memory is available, increasing CPU performance.

3.2.3 Graphics Controller

The graphics controller is located between the CPU interface and the memory sequencer. It performs text manipulation, data rotation, color mapping, and other miscellaneous operations.

3.2.4 Memory Arbitrator

The memory arbitrator allocates bandwidth to the three functions that compete for the limited bandwidth

of display memory. These are CPU access, screen refresh, and DRAM refresh. DRAM refresh is handled transparently by allocating a selectable number of CAS*-before-RAS* refresh cycles at the beginning of each scanline. Screen refresh and CPU access are allocated cycles according to the FIFO-control parameters, with priority given to screen refresh.

3.2.5 Memory Sequencer

The memory sequencer generates timing for display memory. This includes RAS*, CAS* and multiplexedaddress timing, as well as WE* and OE* timing. The memory sequencer generates CAS*-before-RAS* refresh cycles, Random-Read and Random-Early-Write cycles, and Fast Page-mode Read and Early-Write cycles. The memory sequencer generates multiple CAS* or WE* signals according to the memory type used.

3.2.6 CRT Controller

The CRT controller generates the HSYNC and VSYNC signals required for the monitor, as well as BLANK* signals required by the palette DAC.

3.2.7 LCD Flat-Panel Controller

The LCD flat-panel controller drives single-scan and dual-scan color SDN and active-matrix color TFT panels. It also drives monochrome panels with multiple gray-shading options. Additionally, it provides all the power sequencing controls needed by the panels.

3.2.8 Video FIFO

The Video FIFO allows the memory sequencer to execute the display memory accesses needed for screen refresh at maximum memory speed rather than at the screen refresh rate. This makes it possible to collect the accesses for screen refresh near the beginning of the scanline, and to execute them in Fast-page mode rather than Random-Read mode.

3.2.9 Attribute Controller

The attribute controller formats the display for the screen. Display color selection, text blinking, and underlining are performed by the attribute controller.

October 1993

PRELIMINARY DATA BOOK

3.2.10 Palette DAC

The palette DAC contains the color palette and three 6-bit digital-to-analog converters. The color palette, with 256 18-bit entries, converts a color code that specifies the color of a pixel into three 6-bit values one each for red, green, and blue.

3.2.11 Dual-Frequency Synthesizer

The dual-frequency synthesizer generates the memory sequencer clock and the video display clock from a single-reference frequency. The frequency of each clock is programmable. The reference frequency can be generated with an internal crystal-controlled oscillator. Alternatively, it can be supplied from an external TTL source.

3.3 Functional Operation

The four major operations handled in the CL-GD62XX are discussed below.

3.3.1 CPU Access to Registers

The host can be any processor controlling an ISA, '386/'486SL PI, or '386/'486 local bus. It accesses CL-GD62XX registers by setting up a 16- or 24-bit address and forcing IORD* or IOWR* 'low'. The CL-GD62XX responds either as an 8- or 16-bit peripheral, depending on the system configuration, and the host bus interface.

CPU register access does not affect DRAM or screen refresh, which can occur concurrently with CPU access, unless the host is changing display parameters or has suppressed refresh.

3.3.2 CPU Access to Display Memory

All host accesses to display memory are handled by the CL-GD62XX. The host first sets up parameters, such as color and write masks, then generates a memory access in the programmed response range of the CL-GD62XX.

3.3.3 Display Memory Refresh

The CL-GD62XX automatically generates a selectable number of CAS*-before-RAS* refresh cycles during each horizontal timing period.

3.3.4 Screen Refresh

The CRT monitor requires near-constant rewriting (refresh), since the only memory is the phosphor persistence of the screen. Phosphor persistence is typically only a few milliseconds. The CL-GD62XX fetches information from the display memory for each scanline as quickly as possible, using Fast-Pagemode cycles to fill the video FIFO. This allows the maximum possible time for the host to access the display memory.

3.4 Performance

The CL-GD62XX offers the following performanceenhancing features:

- 16-bit CPU interface to I/O registers for faster host access
- 16-bit CPU interface to display memory for faster host access in all modes, including Planar
- DRAM Fast-Page-mode operations for faster access to display memory
- CPU Write Buffer to accelerate CPU access for display writes
- Video FIFO minimizes memory contention
- 32 x 32 hardware cursor to improve Microsoft[®] Windows[™] performance
- Increased throughput with '386 and '486 localbus interface (CL-GD6215/'25/'35)

3.5 Compatibility

The CL-GD62XX includes all registers and data paths required for VGA controllers.

The CL-GD62XX supports extensions to VGA, including 1024 x 768 x 16 non-interlaced modes. Additionally, various 132-column text modes are supported.

The CL-GD62XX has programmable input threshold levels that support TTL or CMOS logic inputs (see register SR16[1:0]).

3.6 Data Bus Interface for 32-Bit Processors

The CL-GD62XX has a 16-bit data bus that must transfer data to/from the 32-bit '386DX/'486 data bus.

40

FUNCTIONAL DESCRIPTION

PRELIMINARY DATA BOOK

The '386DX and '486 assists such transfers, during multiple-word requests, by producing an additional read or write cycle. The CL-GD62XX drives BS16# output 'low' to signal 32-bit accesses to video memory or related I/O registers.

During the additional cycle, the '386DX processor provides internal byte steering, that routes the highorder word to the low-order word pins, but the '486 does not. The '486 requires external transceivers to route its 32-bit CPU data to the 16-bit CL-GD62XX data pins.

To accommodate 32-bit aligned word transfers, the CL-GD62XX provides two outputs (OEH# and OEL#) to select between two 16-bit words. These two control lines enable the high-word and low-word bi-directional data transceivers (74F245), respectively (see Section 1.8 for schematic). Data direction is determined by the CPU status line W/R# attached to the DIR pin of the transceivers. During the first cycle of a 32-bit aligned read from the CL-GD62XX, BS16# and OEL# are driven 'low', and OEH# is driven 'high'. The processor reads the lower-order word from the lowword bus transceivers that route the contents of the CL-GD62XX SD[15:0] to the CPU D[15:0] pins. At the beginning of the second cycle, the CL-GD62XX drives BS16# and OEH#'low', and OEL#'high', causing the high-word transceivers to drive the contents of SD[15:0] onto the D[31:16] CPU pins. Status line W/R# must be held stable throughout both cycles, ensuring that the bus transceivers are driving in the correct direction. Also, since the load on the W/R# output can be four or more, a buffer should be used on W/R# to drive the transceivers.

3.6.1 '486 Burst Mode Support

The CL-GD62XX can request and respond to burst cycles for accesses that require more than a single cycle. By supporting '486 burst transfers, the CL-GD62XX delivers higher performance. During a CPU 32-bit write when BS16# is 'low', a non-burstable CL-GD62XX would normally require two cycles to complete the transfer. The second cycle of a multiple transfer following the first cycle requires an additional clock to produce ADS# (T1 timing). In contrast, burst cycles eliminate the need for this additional clock. As a result of Burst-mode support for 32-bit writes, one CPU clock is saved.

3.6.2 CL-GD62XX Address Decode and Latching

The CL-GD62XX responds to cycles after decoding addresses A[23:2] and status line M/IO#. The CL-GD62XX indicates to the rest of the system that it owns the cycle by asserting LBA# (LDEV# by VL-Bus naming convention). Other devices should not respond when LBA# goes 'low' before the middle of the first T2 timing cycle. For the 32-bit address bus of the '386DX and '486 processors, the address lines A31:23 must be externally decoded and a 'low'-true signal (for a valid CL-GD62XX cycle) should be supplied to the A23 (upper address) input of the CL-GD62XX. This decode must be performed in the minimum possible time; less than 10 ns is recommended.

Since the CL-GD62XX does not decode status line D/C#, it does not respond to special and interrupt acknowledge cycles. The address produced by the CPU during these cycles lies outside the memory and I/O range of the CL-GD62XX. The CL-GD62XX will not respond to I/O locations 0002H-0005H, since responding would cause an inappropriate reaction to certain special cycles.

Because AHOLD of the '486 may go 'high' in the middle of a cycle, the CL-GD62XX will latch the address at the end of the T1 timing cycle. The address latch allows the local bus address to change during an address-hold response without any effect on the CL-GD62XX address decode for the current cycle.

3.6.3 Bus Cycle Restart

The CL-GD62XX does not support '486 bus restart cycles. Since the CL-GD62XX does not receive BOFF#, it does not sense bus cycle restarts and cannot respond appropriately.

3.6.4 Other Considerations

For '386SX:

CPU-RESET is used with CLK2X to generate an internal synchronous 1X system clock. The CPU NA# output (for pipelined cycles) is not an input to the CL-GD62XX, but the controller automatically detects and responds to systeminitiated-pipelined cycles.

October 1993

PRELIMINARY DATA BOOK

For '386DX:

CPU-RESET is used with CLK2X to generate an internal synchronous 1X system clock. BS16# is always set 'low' for CL-GD62XX bus cycles. Pipelined cycles are not supported for '386DX.

For '486:

BS16# is always set 'low' for CL-GD6215/'25/'35 bus cycles.

For '386SL/'486SL (PI):

PCMD#, when 'low', enables the data bus buffers for the current cycle. The 'high'-to-'low' transition of PSTART# latches the address on LA[23:17] and SA[16:0].

The READY# line for local bus support is normally 'off' (high-impedance), and a system pull-up resistor is needed. When the CL-GD62XX decodes a valid address, the READY# line remains 'off' until it can be driven active-'low' for one clock period to end the bus cycle. READY# is then driven 'high' for about 5 ns before returning to 'off'. For memory-read cycles, the READY# output does not go 'low' until the read data is valid. Memory-write cycles are performed in the minimum time possible, as long as the system Write Buffer is not full. I/O read and write cycles (except DAC) have a READY# delay of four CPU clock periods for data cycle requirements. All I/O to the internal video DAC have a READY# delay of four VCLK periods to meet the DAC minimum cycle-time requirements.

The local bus is always 16-bit. All registers are compatible with 16-bit bus cycles; they use SD[7:0] for even-byte addresses, and SD[15:8] for odd-byte addresses. READY# goes 'low' for any I/O read or write to any decoded address in the CL-GD62XX I/O address range (even the unused addresses). The unused locations at decoded CL-GD62XX I/O addresses will always be read as '00H' and will ignore any write data.

3.7 LCD Flat Panel Interface

The CL-GD62XX directly drives a variety of LCD flat panels, including dual-scan/dual-data/passive-matrix monochrome, color active-matrix TFT, color passivematrix STN (CL-GD6225), and dual-scan color STN (CL-GD6235) panels. Proprietary techniques minimize flicker, noise, and pattern motion while enhancing contrast within the grayscales being used.

Grayscale mapping is accomplished by modulating the on-to-off time of individual pixels in the panel and allowing the eye to integrate the superimposed pixels to perceptible grayscales. There are four grayscale mapping options available through register control:

- NTSC weighted
- DAC Look-up table 'green' output
- 4- or 6-bit video data direct
- Attribute Controller 64-shade color data

Color TFT, on all CL-GD62XX devices, and color STN, on the CL-GD6225/'35 are directly supported without additional circuitry. Both 8- and 16-bit interfaces to STN panels are supported on the CL-GD6225/'35. All CL-GD62XX family members support 9-bit (3x RGB), 12-bit (4x RGB), 15- and 18bit TFT color LCD panels. Up to 256 colors from a palette of 256,000 are supported for graphics modes on TFT panels, as well as 16 colors from a palette of 64 colors for text modes.

The CL-GD62XX allows a full spectrum of PC applications written for analog monitors and various video modes to run on standard 640 x 480 LCD flat panels. This is accomplished through color emulation, attribute remapping, and resolution mapping.

In addition, summing circuitry allows rapid generation of IBM-compatible grayscale equivalents of color images. Up to 64 grayscale levels are available by using this proprietary logic. This technique permits all applications that generate monochrome, 4-, 16-, or 256-color images to be run on a monochrome flat panel display.

Cirrus Logic AutoMap[™] logic maps 256 colors into a monochrome image; the colors then appear either in 16 shades of gray with grayscale enhancement, or 64 shades of gray in 256-color modes. The hardwarebased algorithm tracks the particular palette map being used by the internal RAMDAC. RAMDAC data may be stored, as desired by the application, in orderly or random sequences. Realistic renditions of color images are not affected.

Video resolutions can be automatically centered or expanded. Expansion serves to fill the screen

42

FUNCTIONAL DESCRIPTION

PRELIMINARY DATA BOOK

regardless of the number of lines generated by the video mode. If expansion is not selected, then automatic centering can be selected.

3.8 Intelligent Power Management and Sequencing

Notebook and laptop computers have stringent power limitations due to battery operation and heat dissipation. To support these needs, the CL-GD62XX family of VGA controllers use power-saving design techniques for the devices themselves, and efficient power management of the display system. The devices are manufactured with low-power CMOS technology and provide the following power-saving capabilities:

- 3.3- and 5.0-volt operation
- Low-power video DAC operation
- Stop or slow on-chip oscillators and related circitry to reduce power
- Slow down video-memory refresh
- Turn off I/O circuitry to reduce power

In addition, the CL-GD62XX provides efficient power management of the display system by turning-off, or shutting-down the LCD flat panel and CRT when not being used. The controllers offer both hardware methods (using device pins) and software methods (using programmable timers and on-chip registers) to control the LCD flat panel and CRT.

3.8.1 Normal Mode

In the Normal mode, the LCD flat panel and/or the CRT are being used. During the Normal mode, the following occur:

- Display(s) are active and receive power
- Full-screen refresh occurs
- CPU can access:
 - Video memory
 - RAMDAC
 - I/O registers
- Refresh is provided to video memory
- VDD = 3.3V, when performance permits

Since the power consumption is proportional to the square of the supply voltage, the use of 3.3-volt supplies, whenever possible, saves a vast amount of power. Since power consumption is directly proportional to the frequency where the controller is run, the CL-GD62XX uses a proprietary on-chip Frame-Accelerator. The Frame-Accelerator is used only with dual-scan LCD panels to maintain the maximum screen refresh rate, while the clock to the CL-GD62XX functions at 25 MHz or less.

3.8.2 Hardware Power-Management Modes

Several dedicated pins have been assigned to facilitate power management while in LCD-only or CRTonly modes.

- The FPVCC, FPVEE, and FPBACK pins are used to control or enable external voltage generation circuitry during power sequencing.
- The LCDRSET, STANDBY, and SUSPEND pins can be connected to external sources to force the system into power-down modes.
- The NPD pin, when 'high', stops the power-down counters from decrementing. This pin is used to inhibit automatic power-down, when the system is supplied from an AC power source.

3.8.3 Standby Mode

Standby mode stops power to the LCD panel (and/or CRT) when the panel is not being used. As a result, since there is no screen refresh, normal clock rates may be stopped or slowed to further reduce power consumption. During Standby mode, the following occurs:

- LCD panel power-down sequence occurs automatically when this mode is entered
- VCLK oscillator is shut off
- MCLK frquency is divided by six
- No clock is provided to the CRT controller
- Video DAC is in low-power mode
- Video display memory refresh is maintained
- The CPU can access and modify the video display memory and DAC palette
- When Standby mode is terminated, the previous state is restored

October 1993

PRELIMINARY DATA BOOK

FUNCTIONAL DESCRIPTION

3.8.3.1 Initiating/Entering Standby Mode

The CL-GD62XX provides three methods for entering Standby mode — two are software-based and the other is hardware-based. All methods offer the features itemized above. One or more of these methods can be used simultaneously to start and/or maintain Standby mode. All active methods must be removed to terminate Standby mode and start the power-up sequence.

- The Standby Mode Timer, CR21[3:0], can be programmed (in increments of one minute) up to 16 minutes. If the timer is allowed to count down to zero, the Standby mode power-down sequence is started.
- Standby mode is initiated, using software, by setting CR20[4] to '1', starting the Standby mode power-down sequence.
- To enter Standby mode through hardware, connect the STANDBY input (pin 83) to an external source. When the STANDBY pin is driven 'high', the Standby mode power-down sequence starts.

3.8.3.2 Terminating/Exiting Standby Mode

The LCD panel power-up sequence occurs automatically when the Standby mode is terminated, which occurs when all of the methods that initiated the mode are removed.

- Reset the Standby Mode Timer in one of the following ways:
 - Use activity on the ACTi input (pin 28), that is enabled by setting CR1D[6] to '1'.
 - Use any VGA access (memory or I/O), that is enabled by setting CR1D[5] to '1'.
 - Use any keyboard access (except in PI-bus mode) that is enabled by setting SR8[5] to '1'.
- Terminate software Standby mode by setting CR20[4] to '0'.
- Terminate hardware Standby mode by driving the STANDBY input (pin 83) 'low'.

If a power-up or power-down sequence is in progress when there is a request to terminate or initiate Standby mode, the power-up/down sequence is allowed to complete before the new request is executed.

3.8.4 Suspend Mode

The CL-GD62XX Suspend mode is used to save power when the system is not being actively used for a long period of time. The Suspend mode not only turns off the screen(s), but also suspends operation of application programs, and, in the case of hardware-Suspend mode, prohibits the CPU from accessing video memory, I/O registers or the RAMDAC. In hardware-Suspend mode, even though application programs cease to run in either foreground or background, all the register states are saved. When the Suspend mode is terminated, the environment continues from where it stopped.

3.8.4.1 Hardware-Suspend Mode

Hardware-Suspend mode provides the most efficient means of power saving with the CL-GD62XX devices. hardware-Suspend mode is initiated using the SUSPEND input (pin 85). This pin has programmable polarity using register SR8[3], and it uses a debounce timer CR23[7:4] to minimize accidental attempts to initiate Suspend mode. In this mode, the input pads are shut off and the bus interface does not receive power. All I/O pins, except the dedicated Suspend-mode input, are de-activated to further reduce power consumption. Additional power savings occurs because CPU host access to video memory is denied, and a slower 32-kHz clock refreshes the video memory by performing CAS*-before-RAS* refresh. This slow clock input comes from one of two sources:

- By setting CR1D[4] to '1', a 32-kHz clock output results by dividing the 14.318-MHz clock by 432.
- By setting CR1D[4] to '0', an external 32-kHz clock input can be provided via the 32-kHz input (pin 144). A further power reduction is now possible by disabling the 14.318-MHz clock by setting SR16[2] to '1'.

When the system is in hardware-Suspend mode, the following occurs:

- The LCD panel power-up/down sequence occurs automatically when Suspend mode is entered or exited.
- The VCLK and MCLK oscillators are shut off, if CR1C[2] = '1'.

44

FUNCTIONAL DESCRIPTION

PRELIMINARY DATA BOOK

- No CPU access is allowed to the following:
 - Video memory
 - RAMDAC
 - I/O registers
- Although video display memory cannot be accessed by the CPU during Suspend mode, the contents are preserved. (This action is useful when a system remains inactive for a relatively long time.)
- Register data contents are retained.
- The CL-GD62XX refresh clock for video memory is set to 32 kHz, unless DRAMs are self-refresh.
- WARNING: In local-bus systems, CPU attempts to access the CL-GD62XX can cause a system-hang condition.

3.8.4.2 Software-Suspend Mode

This mode is initiated by setting CR20[3] to '1'. In contrast to the hardware-Suspend mode, software-Suspend mode allows the CPU to access video RAM, the I/O bus, and the RAMDAC.

3.8.4.3 Initiating/Entering Suspend Mode

The following methods are used to initiate Suspend mode. To minimize power consumption, the hardware-Suspend mode is recommended.

- To enter hardware-Suspend mode, connect the dedicated SUSPEND input (pin 85) to an external source. The SUSPEND input is programmable in polarity, and the CL-GD62XX internal Debounce Timer (register CR23[7:4]) monitors the input for accidental activation.
- The SUSPEND input pin can also be used to indicate a 'cover-closed' condition by programming CR1C[2] to '0', this prohibits power-down of the MCLK and VCLK. Since CPU access is not disabled in this mode, more power is required.
- The software-Suspend mode is entered by setting CR20[3] to '1'. In this mode, CPU access is still active and the SUSPEND pin is disabled. This mode is not recommended, because it requires more power than hardware-Suspend mode.

3.8.4.4 Terminating/Exiting Suspend Mode

Suspend mode must be terminated/exited in the same manner that it was entered. When the SUSPEND input is driven 'inactive' ('high' or 'low' depending on programmed polarity), Suspend mode is terminated. In software, Suspend mode is terminated by setting CR20[3] to '0'. When Suspend mode is terminated, the system returns to the same operational state it was in before Suspend mode was entered.

3.8.5 Power Sequencing

The CL-GD62XX internal logic controls the sequencing the LCD contrast voltage, logic power, data inputs, and control inputs. To minimize the possibility of damaging the LCD panel, the CL-GD62XX provides the recommended power-up/down sequences shown below. These sequences meet most panel manufacturer specifications.

3.8.5.1 LCD Panel Power-Down Sequence

- 1) Shut off FPVEE and FPBACK
- 2) Wait 96-to-128 ms
- 3) Force all CL-GD62XX panel control signals 'low'
- 4) Wait 32 ms
- 5) Shut off FPVCC
- 6) Shut off internal VCLK

3.8.5.2 LCD Panel Power-Up Sequence

- 1) Turn on VCLK, increase MCLK frequency
- 2) Wait 32 ms
- 3) Enable FPVCC
- 4) Wait 32 ms
- 5) Enable CL-GD62XX panel control signals
- 6) Wait 32 ms
- 7) Enable FPVEE and FPBACK

October 1993

PRELIMINARY DATA BOOK

3.8.6 Additional Power Management Features

3.8.6.1 LCD-only Operation (CRT Disable)

During LCD-only operation, the CRT is disabled. In this mode, DAC analog power is off, and the HSYNC and VSYNC drive is off.

NOTE: When the CRT is disabled and Text mode is selected (CR1E[7] = '1'), power is removed from the video DAC and LUT. CPU access to the LUT is available by using the I/O read/write to 3C6-3C9. Graphics modes can use the LUT for shading.

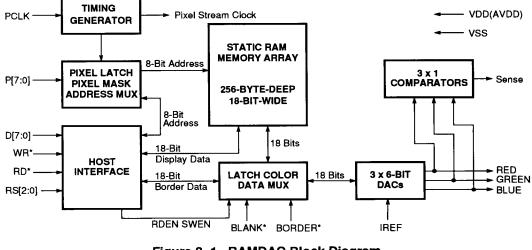
3.8.6.2 CRT-only Operation (LCD Panel Disable)

During CRT-only operation, the LCD panel is disabled. In this mode, panel-drive signals are all inactive, and automatic power-down sequencing occurs.

3.8.6.3 Backlight Timer

An additional internal timer allows the LCD panel backlight to be controlled without entering a powerdown mode. Extension register CR21[7:4] can be programmed from 0-15 minutes to activate the timer. When the register counts down to zero, the FPBACK output will be 'low' and can be used to turn off the panel backlight. Programming this register to a zero disables the Backlight Timer. This timer can be reset to extend the time-out by activity on the ACTi input, or by a VGA access. Extension register CR1D controls these choices.

3.8.6.4 ACTi Function


This input pin can be used to reset both the Standby and Backlight Internal Timers. For example, this pin can be connected to the keyboard interrupt from the system logic. Extension register CR1D[6,3] controls which timers are reset by activity on this pin.

3.9 Internal RAMDAC

The CL-GD62XX includes an on-chip, high-speed memory digital-to-analog converter known as a RAMDAC (see Figure 3–1). The RAMDAC circuitry helps the CL-GD62XX process color-video signals and timing information to the display.

The RAMDAC includes:

- a 256-entry by 18-bit word color Look-up table
- three 6-bit digital-to-analog converters (DACs)
- a Pixel Mask register
- a Border Color register.

FUNCTIONAL DESCRIPTION

46

PRELIMINARY DATA BOOK

An 8-bit address on the pixel address inputs defines the memory location for reading an 18-bit color data word from the Color Look-up table. This data is partitioned as three fields of six bits each (the three fields are Red, Green, and Blue) that drive the individual DAC inputs.

A pixel word mask is included so the incoming pixel address can be altered. This permits immediate changes to the Color Look-up table allowing creation of special display operations such as flashing objects and overlays.

The Color-Look-up table contents are accessed via its 8-bit host interface. An internal synchronizing circuit allows the color-value access to be completely asynchronous to the pixel video operation.

3.9.1 RAMDAC Video Operation

In video operation, the pixel addresses (P0-P7), and the Blank and Border inputs to the DAC are synchronized to the internal pixel clock (PCLK). Their effect appears at the DAC outputs after three further rising edges of PCLK.

The Blank and Border input signals to the DAC are internally generated by the CL-GD62XX. When the Blank input to the DAC is asserted, a binary '0' is applied to the DAC inputs, producing a zero-volt DAC output. When the Border input is asserted, the color data from the Border Color register is applied to the DAC inputs.

The DACOFF input to the DAC is both a display disable control and a DAC power-down control. When DACOFF is asserted, the DACs in the RAMDAC are totally inoperative, that results in the power dissipation being reduced to standby minimum. During this time, the three DAC outputs are at a zero-volt level. When DACOFF is removed, several PCLK cycles are required before the DACs in the RAMDAC will function properly.

3.9.2 Analog Outputs

The DAC outputs produce a 0.7-volt peak white amplitude when supplied with a reference constant current (I_{REF}). The I_{REF} current is supplied with the

circuit shown in the IREF pin description in Section 2.5. For all values of I_{BEF} and output loading:

V_{blacklevel} = zero volts

V_{Max White} = 0.7 volts

3.9.3 Writing to the Color Look-up Table

To write a color definition to the Look-up table, a value specifying an address location in the Look-up table is first written to the Write Mode Address register. The color values for the red, green, and blue intensities are then written in succession to the Color Value register. After the blue data is latched, this new color data is then written into the Look-up table at the defined address and the Address register is incremented automatically.

Since the Address register increments after each transfer of data to the Look-up table, it is best to write a set of consecutive locations at once. The start address of the set of locations is first written to the Write Address Mode register. The color data for each address location is then sequentially written to the Color Value register. The RAMDAC automatically writes data to the Look-up table, and increments the Address register after each host transfer of three bytes of color data.

3.9.4 Reading from the Color Look-up Table

To read color data from the Look-up table, a value specifying the address location of the data is written to the Read Mode Address register. After the address is latched, the data from this location is automatically read out to the Color Value register and the Address register automatically increments.

The color intensity values are then read from the Color Value register by the sequence of three read (RD*) commands. After the blue value is transferred out, new data is read from the Look-up table at the current address to the Color Value register and the Address register automatically increments again.

If the Address register is loaded with a new starting address while an unfinished sequence is in progress, the system resets and starts a new sequence. This occurs for both read and write operations.

October 1993

PRELIMINARY DATA BOOK

4. CL-GD62XX VIDEO MODE TABLES

This section lists tables for configuring the CL-GD62XX for various CRT and flat panel video modes. For detailed information on specific LCD panels that the CL-GD62XX devices can drive, refer to the *Panel Interface Guides* section of the *CL-GD62XX Applications Book*.

4.1 CRT Video Modes

Mode No. (Hex)	No. of Colors	Characters x Rows	Char. Cell (pixeis)	Screen Format (pixels)	Display Mode	Dot Clock (MHz)	Horizontal Frequency (kHz)	Vertical Frequency (Hz)
0, 1	16/256K	40 x 25	9 x 16	360 x 400	Text	28	31.5	70
2, 3	16/256K	80 x 25	9 x 16	720 x 400	Text	28	31.5	70
4, 5	4/256K	40 x 25	8 x 8	320 x 200	Graphics	25	31.5	70
6	2/256K	80 x 25	8 x 8	640 x 200	Graphics	25	31.5	70
7	Monochrome	80 x 25	9 x 16	720 x 400	Text	28	31.5 _	70
D	16/256K	40 x 25	8 x 8	320 x 200	Graphics	25	31.5	70
E	16/256K	80 x 25	8 x 8	640 x 200	Graphics	25	31.5	70
F	Monochrome	80 x 25	8 x 14	640 x 350	Graphics	25	31.5	70
10	16/256K	80 x 25	8 x 14	640 x 350	Graphics	25	31.5	70
11	2/256K	80 x 30	8 x 16	640 x 480	Graphics	25	31.5	60
12	16/256K	80 x 30	8 x 16	640 x 480	Graphics	25	31.5	60
12 ^a	16/256K	80 x 30	8 x 16	640 x 480	Graphics	31.5	37.9	72
13	256/256K	40 x 25	8 x 8	320 x 200	Graphics	25	31.5	70

Table 4–1. IBM [®] Standard VGA Video	o Modes
--	---------

^a Modes denoted by (a) are IBM[®] Standard VGA modes that have been enhanced by Cirrus Logic for a higher vertical frequency.

48

CL-GD62XX VIDEO MODE TABLES

Mode ^a No. (Hex)	VESA No. (Hex)	No. of Colors	Characters x Rows	Character Cell (pixels)	Screen Format (pixels)	Display Mode	Dot Clock (MHz)	Horiz. Freq. (kHz)	Vert. Freq. (Hz)
14	-	16/256K	132 x 25	8 x 16	1056 x 400	Text	41.5	31.5	70
54	10 A	16/256K	132 x 43	8 x 8	1056 x 350	Text	41.5	31.5	70
55	109	16/256K	132 x 25	8 x 14	1056 x 350	Text	41.5	31.5	70
58, 6A	102	16/256K	100 x 37	8 x 16	800 x 600	Graphics	36	35.2	56
58, 6A	102	16/256K	100 x 37	8 x 16	800 x 600	Graphics	40	37.8	60
58, 6A	102	16/256K	100 x 37	8 x 16	800 x 600	Graphics	50	48.1	72
5C	103	256/256K	100 x 37	8 x 16	800 x 600	Graphics	36	35.2	56
5C	103	256/256K	100 x 37	8 x 16	800 x 600	Graphics	40	37.9	60
5C ^b	103	256/256K	100 x 37	8 x 16	800 x 600	Graphics	50 ^b	48.1	72
5D	104	16/256K	128 x 48	8 x 16	1024 x 768	Graphics	65	48.3	60
5D ^c	104	16/256K	128 x 48	8 x 16	1024 x 768	Graphics	44.9	35.5	87 ^c
5F	101	256/256K	80 x 30	8 x 16	640 x 480	Graphics	25	31.5	60
5F	101	256/256K	80 x 30	8 x 16	640 x 480	Graphics	25	31.5	72

Table 4-2. Cirrus Logic Extended CRT Video Modes^a

^a These extended CRT video modes are supported by the Cirrus Logic BIOS. Modes may differ if using another BIOS.

^b Mode 5C with 72-Hz vertical frequency is only available when high-performance memory has been enabled with function 9Eh, and the dot clock is at least 50 MHz. If high-performance memory is disabled, a refresh rate of 60 Hz will be substituted.

^c Mode 5D with Vertical Frequency = 87 Hz is an Interlaced mode.

^d Some modes are not supported by all monitors. The best-quality vertical refresh rate for the monitor type selected will be automatically used.

October 1993

PRELIMINARY DATA BOOK

4.2 LCD Flat Panel Video Modes

Table 4–3. IBM Standard VGA Video Modes

Mode No.	Mono. STN Number of Shades	Color STN Number of Colors	Color TFT Number of Colors	Characters x Rows	Character Cell (pixels)	CRT Screen Format (pixels)	Display Mode	Expanded Size (pixels)
0, 1	16/16	16/256K	16/256K	40 x 25	8 x 16	360 x 400	Text	640 x 475
2, 3	16/16	16/256K	16/256K	80 x 25	8 x 16	720 x 400	Text	640 x 475
4, 5	4/64	4/256K	4/256K	40 x 25	8 x 8	320 x 200	Graphics	640 x 475
6	2/16	2/256K	2/256K	80 x 25	8 x 8	640 x 200	Graphics	640 x 475
7	2/16	Mono.	Mono.	80 x 25	8 x 16	720 x 400	Text	640 x 475
D	16/64	16/256K	16/256K	40 x 25	8 x 8	320 x 200	Graphics	640 x 475
E	16/16	16/256K	16/256K	80 x 25	8 x 8	640 x 200	Graphics	640 x 475
F	2/16	Mono.	Mono.	80 x 25	8 x 14	640 x 350	Graphics	640 x 475
10	16/16	16/256K	16/256K	80 x 25	8 x 14	640 x 350	Graphics	640 x 475
11	2/16	2/256K	2/256K	80 x 30	8 x 16	640 x 480	Graphics	640 x 480
12	16/16	16/256K	16/256K	80 x 30	8 x 16	640 x 480	Graphics	640 x 480
13	64/256K	256/256K	256/256K	40 x 25	8 x 8	320 x 200	Graphics	640 x 480

Table 4–4. Cirrus Logic Extended LCD Video Mode^a

Mode No.	Mono. STN Number of Shades	Color STN Number of Colors	Color TFT Number of Colors	Characters x Rows	Character Celi (pixels)	CRT Screen Format (pixels)	Display Mode	Expanded Size (pixels)
5F	64/256K	256/256K	256/256K	80 x 30	8 x 16	640 x 480	Graphics	640 x 480

a. This extended CRT video mode reflects the Cirrus Logic BIOS. Modes may differ if another BIOS is used.

50

CL-GD62XX VIDEO MODE TABLES

.

5. VGA REGISTER PORT MAP

Table 5–1. VGA Register Port Map

Address	Port	Port Type
3?4 ^a	CRT controller index	Read/Write
3?5 ^a	CRT controller data	Read/Write
	Feature control — monochrome	Write
3BA	Input Status register 1 — monochrome	Read
3C0	Attribute controller index/data	Write
3C1	Attribute controller index/data	Read
	Miscellaneous output	Write
3C2	Input Status register 0	Read
3C3	VGA enable	Read/Write
3C4	Sequencer index	Read/Write
3C5	Sequencer data	Read/Write
3C6	Video DAC pixel mask	Read/Write
	Pixel Address Read mode	Write
3C7	DAC state	Read
3C8	Pixel Mask Write mode	Read/Write
3C9	Pixel data	Read/Write
ЗСА	Feature control readback	Read
3CC	Miscellaneous output readback	Read
3CE	Graphics controller index	Read/Write
3CF	Graphics controller data	Read/Write
	Feature control — color	Write
ЗDA	Input Status register 1 — color	Read

^a The '?' in an address is 'B' for monochrome and 'D' for color.

October 1993

PRELIMINARY DATA BOOK

VGA REGISTER PORT MAP

6. REGISTER INFORMATION

The following tables list the VGA registers and CL-GD62XX Extension registers that are contained in these devices. The CL-GD62XX Extension registers are detailed in this document. For standard VGA register information, see IBM (and other) documentation.

External/General Registers

Abbreviation	Register Name	Index	Port	Page
MISC	Miscellaneous Output	_	3C2 (W)	
MISC	Miscellaneous Input	_	3CC (R)	
FC	Feature Control	_	3?A (W)	
FC	Feature Control	_	3CA (R)	
FEAT	Input Status Register 0	_	3C2	
STAT	Input Status Register 1	-	3?A	72
3C6	Pixel Mask	_	3C6	
3C7	Pixel Address Read Mode	_	3C7 (W)	
3C7	DAC State	-	3C7 (R)	
3C8	Pixel Address Write Mode	_	3C8	
3C9	Pixel Data	-	3C9	

The '?' in the Port Address is 'B' for Monochrome mode and 'D' for Color mode.

VGA Sequencer Registers

Abbreviation	Register Name	Index	Port
SRX	Sequencer Index		3C4
SR0	Reset	0	3C5
SR1	Clocking Mode	1	3C5
SR2	Plane Mask	2	3C5
SR3	Character Map Select	3	3C5
SR4	Memory Mode	4	3C5

CRT Controller Registers

Abbreviation	Register Name	Index	Port	
CRX	CRTC Index	_	3?4	
CR0	Horizontal Total	0	3?5	
CR1	Horizontal Display End	1	3?5	
CR2	Horizontal Blanking Start	2	3?5	
CR3	Horizontal Blanking End	3	3?5	
CR4	Horizontal Sync Start	4	3?5	
CR5	Horizontal Sync End	5	3?5	
CR6	Vertical Total	6	3?5	
CR7	Overflow	7	3?5	
CR8	Screen A Preset Row Scan	8	3?5	
CR9	Character Cell Height	9	3?5	

52

REGISTER INFORMATION

CL-GD62XX LCD VGA Controller Family

Abbrevlation	Register Name	Index	Port	Page
CRA	Text Cursor Start	A	3?5	
CRB	Text Cursor End	В	3?5	
CRC	Screen Start Address High	С	3?5	
CRD	Screen Start Address Low	D	3?5	
CRE	Text Cursor Location High	E	3?5	
CRF	Text Cursor Location Low	F	3?5	
CR10	Vertical Sync Start	10	3?5	
CR11	Vertical Sync End	11	3?5	
CR12	Vertical Display End	12	3?5	
CR13	Offset	13	3?5	
CR14	Underline Row Scan	14	3?5	
CR15	Vertical Blanking Start	15	3?5	
CR16	Vertical Blanking End	16	3?5	
CR17	CRTC Mode Control	17	3?5	
CR18	Line Compare	18	3?5	
CR22	Graphics Data Latches Readback	22	3?5	
CR24	Attribute Controller Toggle Readback	24	3?5	
CR26	Attribute Controller Index Readback	26	3?5	
CR28, CR2A-CR3F	Reserved			

CRT Controller Registers

The '?' in the Port Address is 'B' for Monochrome mode and 'D' for Color mode.

VGA Graphics Controller Registers

Abbreviation	Register Name	Index	Port	Page
GRX	Graphics Controller Index		3CE	
GR0	Set/Reset	0	3CF	73
GR1	Set/Reset Enable	1	3CF	74
GR2	Color Compare	2	3CF	
GR3	Data Rotate	3	3CF	
GR4	Read Map Select	4	3CF	
GR5	Mode	5	3CF	75
GR6	Miscellaneous	6	3CF	
GR7	Color Don't Care	7	3CF	
GR8	Bit Mask	8	3CF	

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

VGA Attribute Controller Registers

Abbreviation	Register Name	Index	Port	Page
ARX	Attribute Controller Index	_	3C0/3C1	
AR0-ARF	Attribute Controller Palette	0:F	3C0/3C1	
AR10	Attribute Controller Mode Control	10	3C0/3C1	
AR11	Overscan (Border) Color	11	3C0/3C1	
AR12	Color Plane Enable	12	3C0/3C1	
AR13	Pixel Panning	13	3C0/3C1	
AR14	Color Select	14	3C0/3C1	

NOTES:

- 1) VGA Attribute Controller data registers (AR0-ARF and AR10-AR14) are read from port 3C1 and written to port 3C0.
- After initialization, I/O writes to 3C0 toggle between the Attribute Controller Index register (ARX) and the VGA Attribute Controller Data registers.

Abbreviation	Register Name	Index	Port	Page
SR6	Unlock ALL Extensions	6	3C5	56
SR7	Extended Sequencer Mode	7	3C5	57
SR8	Miscellaneous Control	8	3C5	58
SR9	Scratch-Pad 0	9	3C5	60
SRA	Scratch-Pad 1	Α	3C5	60
SRB	VCLK0 Numerator	В	3C5	61
SRC	VCLK1 Numerator	С	3C5	61
SRD	VCLK2 Numerator	D	3C5	61
SRE	VCLK3 Numerator	E	3C5	61
SRF	DRAM Control	F	3C5	62
SR10	Graphics Cursor X Position	10	3C5	64
SR11	Graphics Cursor Y Position	11	3C5	65
SR12	Graphics Cursor Attributes	12	3C5	66
SR13	Graphics Cursor Pattern Address Offset	13	3C5	67
SR14	Scratch-Pad 2	14	3C5	60
SR15	Scratch-Pad 3	15	3C5	60
SR16	Miscellaneous Control 2	16	3C5	68
SR19	Scratch-Pad 4	19	3C5	60
SR1A	Miscellaneous Control 3	1A	3C5	69
SR1B	VCLK0 Denominator and Post-Scalar Value	1B	3C5	70
SR1C	VCLK1 Denominator and Post-Scalar Value	1C	3C5	70
SR1D	VCLK2 Denominator and Post-Scalar Value	1D	3C5	70
SR1E	VCLK3 Denominator and Post-Scalar Value	1E	3C5	70
SR1F	Memory Clock Frequency Programming	1F	3C5	71

CL-GD62XX Extension Registers

54

REGISTER INFORMATION

Abbreviation	Register Name	Index	Port	Page
GR9	Offset Register 0	9	3CF	76
GRA	Offset Register 1	Α	3CF	77
GRB	Graphics Controller Mode Extensions	В	3CF	78
CR19	Interlace End	19	3?5	79
CR1A	Interlace Control	1A	3?5	80
CR1B	Extended Display Controls	1B	3?5	82
CR1C	Flat-Panel Interface	1C	3?5	83
CR1D	Flat-Panel Expansion, Centering Locks	1D	3?5	85
CR1E	Flat-Panel Shading	1E	3?5	87
CR1F	Modulation Control	1F	3?5	89
CR20	Power Management	20	3?5	90
CR21	Power-down Timers	21	3?5	92
CR23	FPVCC, FPBACK, SUSPEND Control	23	3?5	93
CR25	Part Status Register	25	3?5	94
CR27	ID Register	27	3?5	95
CR29	Configuration Register	29	3?5	96

CL-GD62XX Extension Registers (cont.)

The '?' in the Port Address is 'B' for Monochrome mode and 'D' for Color mode.

LCD Timing Registers

Abbreviation	Register Name	Index	Port	Page
R0X	Horizontal Total for 80-Column Display	1D	3?5	97
R1X	Horizontal Total for 40-Column Display	1D	3?5	98
R2X	LFS Vertical Counter Value Compare (uncenter	ered)1D	3?5	99
R3X	LFS Vertical Counter Value Compare (centere		3?5	100
R4X	LFS Vertical Counter Value Compare (centere	d) 1D	3?5	101
R5X	LFS Vertical Counter Value Compare (centere		3?5	102
R6X	Overflow Bits for LFS Signal Compare	1D	3?5	103
R7X	Panel Signal Control for TFT	1D	3?5	104
R8X	STN Color Panel Data Format	1D	3?5	105
R9X	TFT Panel Data Format	1D	3?5	106
RAX	TFT Panel HSYNC Position Control	1D	3?5	107
RBX	Special Controls for CL-GD6235	1D	3?5	108

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1 CL-GD62XX Extended-Register Details

NOTE: Unless otherwise specified, 'Reserved' and 'Unused' bits are initialized to '0' at reset.

6.1.1 SR6: Unlock All CL-GD62XX Register Extensions

I/O Port Address: 3C5 Index: 6

Bit	Description	Access	Reset State
7(MSB)	Unused		
6	Unused		
5	Unused		
4	Lock Bit 4	R/W	' 0'
3	Lock Bit 3	R/W	' 0'
2	Lock Bit 2	R/W	'0'
1	Lock Bit 1	R/W	'0'
0(LSB)	Lock Bit 0	R/W	' O'

This register is used to enable or disable access to all the Extension registers.

Bit	Description
7:5	Reserved
4:0	Extension Register Access Value: If this field is loaded with 'xxx1x010', it will be read as '00010010' (12h), and the Extension registers will be enabled for read and write access. If this field is loaded with any other value, it will be read as '00001111' (0Fh), and the Extension registers will be disabled for read and write access.

56

REGISTER INFORMATION

6.1.2 SR7: Extended Sequencer Modes

I/O Port Address: 3C5 Index: 7

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6	Select LCD Panel/CRT Sense	R	MD14
5	Select LCD Panel/CRT Sense	R	MD13
4	Select LCD Panel/CRT Sense	R	MD12
3	Reserved		
2	Reserved		
1	Reserved		
0(LSB)	High-Resolution Color/Packed Pixel	R/W	'O'

Bit	Description
7	Reserved
6:4	Select LCD Panel/CRT Sense Method: The state of memory data lines MD[14:12] is latched at system reset and stored in bits [6:4]. The Cirrus Logic BIOS uses these bits to select an LCD panel class, or these bits may be used for digitally sensing at boot-up, the type of CRT monitor that is attached.
3:1	Reserved
0	Select 256-Color Mode and Packed-Pixel Addressing: If this bit is programmed to a '1', the Video Shift registers are configured so that one character clock is equal to eight pixels. At the same time, true packed-pixel memory addressing is enabled. If this bit is programmed to '0', this mode is a 'don't care'.
	acked-nivel addressing, consecutive nivels are stored at consecutive addresses. In contrast with

NOTE: With true packed-pixel addressing, consecutive pixels are stored at consecutive addresses. In contrast with Chain-4 Addressing, consecutive pixels are stored at every fourth address in display memory.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.3 SR8: Miscellaneous Control

I/O Port Address: 3C5 Index: 8

7

Bit	Description	Access	Reset State
7(MSB)	Symmetrical DRAM Addressing	R/W	=DUALCAS*
6	Disable MCS16* for Display Memory	R/W	' 0'
5	Reset Standby Timer	R/W	'0'
4	Reset Backlight Timer	R/W	'0'
3	SUSPEND Active Polarity	R/W	'0'
2	SW3 Read	R	=SW3
1	SW2 Read	R	=SW2
0(LSB)	SW1 Read	R	=SW1

Bit Description

Symmetrical DRAM Addressing: This bit is used to select symmetrical DRAM addressing for Page mode text on a CRT.

This bit must be set to '1' only if using the CL-GD62XX with Dual-WE* DRAMs having 9-bit addressing (symmetrical DRAM), and the CL-GD62XX is to be set for a 132-column text mode on the CRT. The RESET state of this bit is determined by the DUALCAS* Input Select (pin 72).

If dual-CAS* DRAM is selected (i.e., pin 72 is connected to VDD), then bit 7 is automatically programmed to '1', and symmetrical addressing is automatically set. To enable asymmetrical dual-CAS* DRAM, bit 7 must be programmed manually to '0'. If dual-WE* DRAM is selected (i.e., pin 72 is connected to VSS), then bit 7 is automatically programmed to '0', and asymmetrical addressing is automatically set. To enable symmetrical dual-WE* DRAM, bit 7 must be programmed manually to '1'. For a 256K x 4 DRAM environment (that is, pin 72 is connected to VSS), then bit 7 is automatically programmed to '0', and asymmetrical addressing is automatically set. However, because all 256K x 4 DRAMs are symmetrical, bit 7 must be programmed manually to '1'.

6 **Disable MEMCS16* for Display Memory:** If this bit is programmed to '1', accesses to display memory will not cause MEMCS16* to become active. This prevents interference when two video subsystems are installed (i.e., a portable computer mounted in a docking station). This bit is meaningful only when the CL-GD62XX is installed on an ISA bus

This bit is meaningful only when the CL-GD62XX is installed on an ISA-bus adapter. For all other configurations, this bit must be programmed to '0'.

58

REGISTER INFORMATION

6.1.3	SR8: Miscell	aneous	Control	(cont.)
-------	--------------	--------	---------	---------

Bit	Description
5	Reset Standby Timer: This bit is used to reset the internal Standby Mode Timer when there is an I/O read to the keyboard controller (port 60h).
4	Reset Backlight Timer: This bit is used to reset the internal Backlight Timer when there is an I/O read to the keyboard controller (port 60h).
3	SUSPEND Active Polarity: This bit is used to select the polarity of the SUSPEND input pin for Suspend mode activation. This bit must be set to match the input state of the SUSPEND input before activating the MCLK and VCLK power-down operation with register CR1C[2].
	If this bit is set to a '0', then SUSPEND is active-'high' (reset state). If this bit is set to a '1', then SUSPEND is active-'low'.
2:0	SW3-SW1 Read: These read-only bits reflect the active state of Switch Inputs SW3-SW1, respectively. These bits are for BIOS use. In a '486 local-bus system, the SW3-SW1 pins are redefined as outputs OEH#, BLAST#, and OEL#, respectively. Therefore, these bits are not used.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.4 SR9, SRA, SR14, SR15, SR19: Scratch-Pad Registers 0-4

I/O Port Address: 3C5 Index: 9, A, 14, 15, 19

Bit	Description	Access	Reset State
7(MSB)	R/W Data [7]	R/W	'0'
6	R/W Data [6]	R/W	'0'
5	R/W Data [5]	R/W	'0'
4	R/W Data [4]	R/W	'0'
3	R/W Data [3]	R/W	'0'
2	R/W Data [2]	R/W	'O'
1	R/W Data [1]	R/W	'0'
0(LSB)	R/W Data [0]	R/W	'0'

These registers are reserved exclusively for the CL-GD62XX BIOS and must never be written by an application program. They are listed here only for completeness.

Bit	Description
7:0	These bits are reserved for the Cirrus Logic video BIOS.

60

REGISTER INFORMATION

6.1.5 SRB, SRC, SRD, SRE: VCLK0, 1, 2, 3 Numerator Value

I/O Port Address: 3C5 Index: B, C, D, E

Bit	Description	Access	Reset State
7(MSB)	Reserved		_
6`́	VCLK Numerator [6]	R/W	Refer to table below
5	VCLK Numerator [5]	R/W	Refer to table below
4	VCLK Numerator [4]	R/W	Refer to table below
3	VCLK Numerator [3]	R/W	Refer to table below
2	VCLK Numerator [2]	R/W	Refer to table below
1	VCLK Numerator [1]	R/W	Refer to table below
0(LSB)	VCLK Numerator [0]	R/W	Refer to table below

These registers, in conjunction with SR1B-SR1E, are used to determine the frequency of video clocks, and are selected by register MISC[2:3].

Bit	Description
7	Reserved
6:0	VCLK Numerator [6:0]: The following table shows the frequency loaded in these registers at RESET:

Clock	Freq. (MHz)	N	D	Р	Numera	ator (SRI)	Denomina	tor/Prescalar
VCLKO	25.180	102	29	1	SRB	66h	SR1B	3Bh
VCLK1	28.325	91	23	1	SRC	5Bh	SR1C	2Fh
VCLK2	41.165	69	24	0	SRD	45h	SR1D	30h
VCLK3	36.082	126	25	1	SRE	7Eh	SR1E	33h

For each Video Clock (VCLK), the frequency is determined with the following expression:

$$VCLKn (MHz) = \frac{OSC \times N}{D \times [P+1]}$$

Where:

OSC= Input Clock, 14.31818 MHzNumerator= Register Data Bits SRi[6:0], i = B, C, D, EDenominator= Register Data Bits SR1i[5:1]Post-Scalar= Register Data Bits SR1i[0]

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

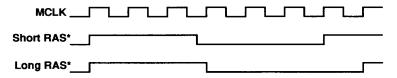
6.1.6 SRF: DRAM Control

I/O Port Address: 3C5 Index: F

Bit 7(MSB) 6	Description Extended Frame-Accelerator Enable Reserved	Access R/W	Reset State '0'
5 4 3	CPU Write Buffer Depth Control Reserved Reserved	R/W	.0.
2 1 0(LSB)	RAS* Timing Select MCLK Frequency Select [1] MCLK Frequency Select [0]	R/W R/W R/W	'1' '1' '1'
Bit	Description		
7	Extended Frame-Accelerator Enab mechanism provides only half of the r dual-scan monochrome LCD-only mo	normal refres	
6	Reserved		
5	CPU Write Buffer Depth Control: W Write Buffer depth will be set to one cally, this setting will be used for sta modes.	level (16-bits	/level). This is the default. Typi-
	When this bit is programmed to a '1', t levels (16-bits/level). This setting shou will typically be used for any Extended In Local-bus mode, this bit has no eff	Ild never be 8-bit Pixel n	used for any text mode. This bit nodes.
 4:3	Reserved		

62

REGISTER INFORMATION



6.1.6 SRF: DRAM Control (cont.)

Bit	Description
2	RAS* Timing Select: When this bit is programmed to '1' (the default), RAS* timing for short-RAS* DRAMs is selected. In this mode, the RAS* output (pin 128) is 'high' for 2.5+ MCLK cycles, and 'low' for 3.0+ MCLK cycles, for a total period of six MCLK cycles.

When this bit is programmed to '0', RAS* timing for **long-RAS* DRAMs** is selected. In this mode, the RAS* output is 'high' for 3 MCLK cycles, and 'low' for 4 MCLK cycles.

NOTE: The long-RAS* timing option allows the use of faster MCLKs with DRAMs that have a better CAS* cycle time without violating the RAS* access-time requirements.

1:0

MCLK Frequency Select: These bits select the active memory clock frequency according to the table below. To adjust the frequency, refer to SR1F[5:0].

SRF[1]	SRF[0]	MCLK Frequency	
'0'	'0'	50.11 MHz	
ʻ0'	'1'	44.74 MHz	
'1'	' 0'	25.00 MHz	
'1'	'1'	37.58 MHz (default at reset)	

▼ CAUTION: Do not select an MCLK frequency that is slower than the VCLK frequency.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.7 SR10, 30, 50, 70, 90, B0, D0, F0: Graphics Cursor X Position

I/O Port Address: 3C5 Index: 10, 30, 50, 70, 90, B0, D0, F0

Bit	Description	Access	Reset State
7(MSB)	Cursor X [10]	R/W	'O'
6	Cursor X [9]	R/W	'0'
5	Cursor X [8]	R/W	'0'
4	Cursor X [7]	R/W	'0'
3	Cursor X [6]	R/W	'0'
2	Cursor X [5]	R/W	'0'
1	Cursor X [4]	R/W	'0'
0(LSB)	Cursor X [3]	R/W	'O'

This register, and bits [7:5] of the index used to access it, are used to define the horizontal (X) pixel offset of the graphics cursor.

The data forms the upper-eight bits of the 11-bit position; bits [7:5] of the index form the lower-three bits of the 11-bit position. This allows the entire 11-bit cursor offset to be written in a single 16-bit I/O write. The offset must be placed in AX[15:5]; AX[4:0] must be '10000', and DX must be 03C4. If 10, 30, 50...F0 is written to 3C4 without writing to 3C5 (a byte write), then a read of 3C4 will return the *previously* stored three bits of the cursor position.

Bit	Description
7:0	Cursor X [10:3]: This 8-bit field forms the upper-eight bits of the 11-bit horizontal offset of the graphics cursor. The index used to access this register forms the low-order three bits of the 11-bit offset.

64

REGISTER INFORMATION

6.1.8 SR11, 31, 51, 71, 91, B1, D1, F1: Graphics Cursor Y Position

I/O Port Address: 3C5 Index: 11, 31, 51, 71, 91, B1, D1, F1

Bit	Description	Access	Reset State
7(MSB)	Cursor Y [10]	R/W	' 0'
6	Cursor Y [9]	R/W	'0'
5	Cursor Y [8]	R/W	' 0'
4	Cursor Y [7]	R/W	' 0'
3	Cursor Y [6]	R/W	'0'
2	Cursor Y [5]	R/W	'0'
1	Cursor Y [4]	R/W	'0'
0(LSB)	Cursor Y [3]	R/W	'0'

This register, and bits [7:5] of the index used to access it, are used to define the vertical (Y) pixel offset of the graphics cursor.

The data forms the upper-eight bits of the 11-bit position; bits [7:5] of the index form the lower-three bits of the 11-bit position. This allows the entire 11-bit cursor offset to be written in a single 16-bit I/O write. The offset must be placed in AX[15-5]; AX[4:0] must be '10000', and DX must be 03C4. If 11, 31, 51...F1 is written to 3C4 without writing to 3C5 (a byte write), then a read of 3C4 will return the *previously* stored three bits of the cursor position.

Bit	Description
7:0	Cursor Y [10:3]: This 8-bit field forms the upper-eight bits of the 11-bit vertical off- set of the graphics cursor. The index used to access this register forms the low- order three bits of the 11-bit offset.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.9 SR12: Graphics Cursor Attributes

I/O Port Address: 3C5 Index: 12

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6	Reserved		
5	Reserved		
4	Reserved		
3	Reserved		
2	Reserved		
1	Allow Access to DAC Extended Colors	R/W	'0'
0(LSB)	Graphics Hardware Cursor Enable	R/W	'O'

Bit Description

7:2 Reserved

1

Allow Access To DAC Extended Colors: The table below shows the result of programming this bit to either a '0' or a '1':

		Result	
SR12[1] DAC Lookup Table (LUT) Entry		How Table Entry is Used	How Accessible
'0'	Entire LUT	Entire LUT is VGA-compatible.	_
	256 ^a	Used as hardware cursor back- ground.	Accessible as location x0h.
'1'	257 ^a	Used as hardware cursor fore- ground.	Accessible as location xFh.
	258	Provides selected overscan color.	Accessible as location x2h.

^a Entry 256 and 257, when SR12[1] = '1', provides a cursor that is completely independent of the display data colors.

0 **Graphics Hardware Cursor Enable:** If this bit is set to '1', the graphics hardware cursor will be enabled and will appear on the screen. If this bit is programmed to '0' (the default), the graphics hardware cursor will be disabled and will not appear on the screen. See SR13[1:0] for cursor pattern select options.

66

REGISTER INFORMATION

6.1.10 SR13: Graphics Cursor Pattern Address Offset

I/O Port Address: 3C5 Index: 13

Bit 7(MSB) 6 5 4 3	Description Reserved Reserved Reserved Reserved Reserved	Access	Reset State			
2 1 0(LSB)	Reserved Cursor Pattern Select [1] Cursor Pattern Select [0]	R/W R/W	.0, .0,			
Bit	Description					
7:2	Reserved					
1:0	Cursor Pattern Select [1:0]: When SR12[0] = '1', this 2-bit field is used to select one of four possible 32 x 32-bit cursor patterns stored at the top (highest- addressed 8K bytes) of the display memory.					

October 1993

PRELIMINARY DATA BOOK

6.1.11 SR16: Miscellaneous Control 2

I/O Port Address: 3C5 Index: 16

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6	Reserved		
5	Select Minimum Delayed READY#	R/W	'0'
4	Timing Adjust for '486 COMMAND	R/W	'0'
3	Reserved		
2	OSC Input Disable in Suspend	W	'0'
1	DRAM Interface-Input Threshold Select	W	'0'
0(LSB)	CPU-bus Interface-Input Threshold Select	w	'0'

This register is reserved exclusively for the CL-GD62XX BIOS and must never be written by an application program. It is listed here only for completeness.

Bit	Description
7:6	Reserved
5	Select Minimum Delayed READY#: When this bit is set to '0', a minimum READY# (pin 32) signal delay for memory cycles is selected. This is the normal setting for this bit.
	When this bit is set to '1', the READY# output pin is delayed by three wait states. This is for <i>test mode only</i> and should not be used in normal operation.
4	Timing Adjust For '486 COMMAND Pin: This bit should be set to '0' for normal operation.
	When this bit is set to '1', an additional 1/2 CPU clock delay is selected for the '486 COMMAND pin. This is for <i>test mode only</i> and should not be used in normal oper- ation.
3	Reserved
2	OSC Input Disable In Suspend Mode: When this bit is '1', the oscillator input pad is disabled during hardware-Suspend mode shutting off internal clocks and their associated power dissipation. This bit should be set to '1' only when an external 32-kHz source (CR1D[4] = '0') is supplied for memory refresh during Suspend mode. When this bit is '0', the oscillator input pad is always enabled.
1	DRAM Interface-Input Threshold Select: When this bit is '0', the DRAM inter- face-input thresholds are set for TTL levels. When this bit is '1', the DRAM interface- input thresholds are set for CMOS levels.
0	CPU-Bus Interface-Input Threshold Select: When this bit is '0', the CPU-bus interface-input thresholds are set for TTL levels. When this bit is '1', the CPU-bus interface-input thresholds are set for CMOS levels

68 BEGI

REGISTER INFORMATION

PRELIMINARY DATA BOOK

6.1.12 SR1A: Dual-Scan Color Control (CL-GD6235 only)

I/O Port Address: 3C5 Index: 1A

Bit	Description	Access	Reset State
7(MSB)	Refresh Select	R/W	'0'
6	Dual-Scan Color STN Select	R/W	'0'
5	Video Memory/CPU Bandwidth	R/W	'0'
4	Reserved		
3	Reserved		
2	Reserved		
1	Reserved		
0(LSB)	Reserved		

The SR1A[7:5] bits of this register are user-programmable for the CL-GD6235 only. For the CL-GD6205/'15/'25, this register is reserved exclusively for the BIOS, and must never be written by an application program.

Bit	Description
7	Refresh Per Line Select: When this bit is set to '1', one refresh cycle per scanline is selected (for CL-GD6235 only). When this bit is set to '0' (default), register CR11[5] selects three or five refresh cycles-per-scanline.
6	Dual-scan Color STN Select: When this bit is set to '1', Dual-scan Color STN mode is selected (for CL-GD6235 only). Also, register CR1C[7:6] must be programmed to '10' to select Color STN panels. This register is 'Reserved' on CL-GD6205/'15/'25 devices.
5	Video Memory/CPU Bandwidth Allocation: When this bit is set to '1', the CPU has more access to the memory bus by reducing the FIFO latency (for CL-GD6235 only). When set to '0', the CPU access uses normal FIFO latency.
4:0	Reserved.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.13 SR1B, SR1C, SR1D, SR1E: VCLK0, 1, 2, 3 Denominator and Post Scalar Value

I/O Port Address: 3C5 Index: 1B, 1C, 1D, 1E

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6	Reserved		
5	VCLK Denominator [4]	R/W	'0'
4	VCLK Denominator [3]	R/W	'0'
3	VCLK Denominator [2]	R/W	'0'
2	VCLK Denominator [1]	R/W	'0'
1	VCLK Denominator [0]	R/W	'0'
0(LSB)	VCLK Post Scalar	R/W	'0'

This register, in conjunction with SRB, is used to determine the frequency of Video Clock 0 (VCLK0). The reset values for these four registers are shown in the VCLK Numerator Table in Section 6.1.5.

Bit	Description
7:6	Reserved
5:1	VCLK Denominator [4:0] The following table shows an example of the frequency loaded into these registers at Reset:

Clock	Freq. (MHz)	N	D	P	Num	erator	Denomina	tor/Prescalar
VCLK0	25.180	102	29	1	SRB	66h	SR1B	3Bh
VCLK1	28.325	91	23	1	SRC	5Bh	SR1C	2Fh
VCLK2	41.165	69	24	0	SRD	45h	SR1D	30h
VCLK3	36.082	126	25	1	SRE	7Eh	SR1E	33h

0 VCLK Post Scalar: Defines a divide-by-one or divide-by-two operator in the denominator.

The 7-bit numerator (N), 5-bit denominator (D), and 1-bit post scalar (P) for each video clock (VCLK) determines its frequency according to the following expression:

$$VCLKn (MHz) = \frac{OSC \times N}{D \times [P+1]}$$

Where:

OSC = Input Clock, 14.31818 MHz N = Register Data Bits SRi[6:0], i = B, C, D, E D = Register Data Bits SR1i[5:1] P = Register Data Bits SR1i[0]

REGISTER INFORMATION

70

PRELIMINARY DATA BOOK

6.1.14 SR1F: Memory Clock Frequency Programming

I/O Port Address: 3C5 Index: 1F

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6	Reserved		
5	MCLK Frequency [5]	R/W	(See MCLK Table below)
4	MCLK Frequency [4]	R/W	(See MCLK Table below)
3	MCLK Frequency [3]	R/W	(See MCLK Table below)
2	MCLK Frequency [2]	R/W	(See MCLK Table below)
1	MCLK Frequency [1]	R/W	(See MCLK Table below)
0(LSB)	MCLK Frequency [0]	R/W	(See MCLK Table below)

Bit	Description
7:6	Reserved
5:0	MCLK Frequency [5:0]: As indicated in the following equation, this field directly programs an adjustment to the MCLK frequency that was selected with register SRF.

MCLK = (Reference Frequency + 8) x SR1F[5:0]

This field may be programmed with any value from 21 to 28 (decimal) or 15 to 1C (hex).

The MCLK table below provides examples with a reference frequency of 14.31818 MHz.

SR1F[5:0] (Decimal)	SR1F[5:0] (Hex)	MCLK Frequency (MHz)
21	15	37.585
23	17	41.165
25	19	44.744
26	1A	46.534
28	1C	50.114

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION 71

6.1.15 STAT: Input Status Register 1

I/O Port Address: 3?A Index: 1

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6	Reserved/Interlaced Field Status	R	'0'
5	Diagnostic 0	R	'0'
4	Diagnostic 1	R	'0'
3	Vertical Retrace	R	'0'
2	Reserved		
1.	Reserved		
0(LSB)	Display Enable	R	ʻO'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

	Bit	Description	
_	7	Reserved	
_	6	Reserved (in VGA-compatible mode) Interlaced Field Status: If Interlaced mode is programmed by setting the CRTC register, CR1A[0] = '1', then this bit reflects the interlaced-frame field number.	
	5:4	Diagnostic [1:0]: These bits follow two of eight outputs of the Attribute Controller.	

5:4 **Diagnostic [1:0]:** These bits follow two of eight outputs of the Attribute Controller. The selection is made according to the Attribute register AR12[5:4] (Color Plane Enable register), as indicated in the following table:

AR12[5]	AR12[4]	STAT[5]	STAT[4]
'0'	'0'	P[2] Red	P[0] Blue
,0,	·1'	P[3] Secondary Blue	P[1] Green
'1 '	'0'	P[5] Secondary Red	P[4] Secondary Green
'1'	'1'	P[7]	P[6]

3	Vertical Retrace: A '1' indicates that vertical retrace is in progress.
2:1	Reserved
0	Display Enable: If this bit is read as a '0', video is being serialized and displayed. If this bit is read as a '1', vertical or horizontal blanking is active.

72 REGISTER INFORMATION

PRELIMINARY DATA BOOK

6.1.16 GR0: Set/Reset Register (CL-GD62XX Extensions)

Bit	VGA Write Modes 0 or 3	CL-GD62XX Extended Write Mode 5	Reset State
7	Set/Reset Map 7	Write Mode 5 — Background Color Bit 7	'0'
6	Set/Reset Map 6	Write Mode 5 — Background Color Bit 6	' 0'
5	Set/Reset Map 5	Write Mode 5 — Background Color Bit 5	'O'
4	Set/Reset Map 4	Write Mode 5 — Background Color Bit 4	'0'
3	Set/Reset Map 3	Write Mode 5 — Background Color Bit 3	'0'
2	Set/Reset Map 2	Write Mode 5 — Background Color Bit 2	'0'
1	Set/Reset Map 1	Write Mode 5 — Background Color Bit 1	'0'
0	Set/Reset Map 0	Write Mode 5 — Background Color Bit 0	'0'

The function of these bits is changed from the normal VGA Set/Reset definition. These bits define the **background** color, if the CL-GD62XX Extended Write mode 5 is selected as described in the GR5 and GRB register descriptions.

Bit	Description
7:0	Set/Reset Map for Background Color: If $GRB[2] = '1'$, then bits [7:4] of this register are read/write. In addition, if $GRB[2] = '1'$, Write modes 0 or 3 use only bits [3:0] of this register, although bits [7:4] are read/write. If $GRB[2] = '0'$, then $GR0[7:4]$ are read-only, and set to '0'.

October 1993

PRELIMINARY DATA BOOK

6.1.17 GR1: Enable Set/Reset Register (CL-GD62XX Extensions)

Bit	VGA Write Mode 0	CL-GD62XX Extended Write Modes 4 or 5	Reset State
7	Enable Set/Reset Map 7	Write Modes 4/5 — Foreground Color Bit 7	'0'
6	Enable Set/Reset Map 6	Write Modes 4/5 — Foreground Color Bit 6	' O'
5	Enable Set/Reset Map 5	Write Modes 4/5 — Foreground Color Bit 5	'0'
4	Enable Set/Reset Map 4	Write Modes 4/5 — Foreground Color Bit 4	'0'
3	Enable Set/Reset Map 3	Write Modes 4/5 — Foreground Color Bit 3	'0'
2	Enable Set/Reset Map 2	Write Modes 4/5 — Foreground Color Bit 2	'0'
1	Enable Set/Reset Map 1	Write Modes 4/5 — Foreground Color Bit 1	΄Ο
0	Enable Set/Reset Map 0	Write Modes 4/5 — Foreground Color Bit 0	' 0'

The function of these bits is changed from the normal VGA Enable Set/Reset definition. These bits define the **foreground** color, if the CL-GD62XX Extended Write modes 4 or 5 are selected as described in the GR5 and GRB register descriptions.

Bit	Description
7:0	Set/Reset Map Enable for Foreground Color: If GRB[2] = '1', then bits [7:4] of this register are read/write. In addition, if GRB[2] = '1', Write mode 0 uses only bits [3:0] of this register, although bits [7:4] are read/write. If GRB[2] = '0', then GR1[7:4] are read only and set to '0'.

74

6.1.18 GR5: Mode Register (CL-GD62XX Extensions)

I/O Port Address: 3CF Index: 5

Bit 7(MSB)	Description Reserved	Mode	Reset State
6	256-Color Mode (all 256-color Modes)	VGA	NA
5	Shift Register Mode	VGA	NA
4	Odd/Even	VGA	NA
3	Read Type	VGA	NA
2	Extended Write Mode Bit [2]	CL-GD62XX	NA
1	Write Mode Bit [1]	VGA	NA
0(LSB)	Write Mode Bit [0]	VGA	NA
 Bit	Description		
 7	Reserved		
6:3	These are normal VGA functions and are n	ot explained her	е.
 2	Extended Write Mode Select Bit[2]: Whe mode Select bit, in conjunction with Write GRB[2] to '0' directly clears GR5[2] to '0', a	mode bits 1 and	0, GR5[1:0]. Clearing
 1:0	Write Mode Select Bits [1:0]: When $GRB[2] = 0'$ and $GR5[2] = 0'$, these bits select standard VGA Write modes 3 through 0. When $GRB[2] = 1'$ and $GR5[2] = 1'$, these two bits select Extended Write modes 4 and 5 (explained below). Extended Write modes 6 and 7 are not implemented.		

The CL-GD62XX *Extended Write modes* operate on eight pixels at a time in 256-color Graphics modes, with packed-pixel addressing. They can be used for text write, line draw, or pattern fills. Both modes 4 and 5 should be used with x8 Addressing selected, GRB[1] = '1'.

Extended Write Mode 4: 256-Color Text Write Mode — Preserve Background

If the CPU Data bit is '1', then the Graphics Controller Enable Set/Reset register (GR1) 8-bit value is the foreground color selected. If the CPU Data bit is a '0', then that pixel is not changed by the write.

The Enable Set/Reset register GR1 is normally four bits; to extend this register to eight bits, set GRB[2] to '1'.

The Sequencer Map Mask register (SR2) is also normally four bits. To extended this register to eight bits, set GRB[2] to '1'. However, in 8-bit mode, it inhibits writes.

Extended Write Mode 5: 256-Color Text Write Mode — Foreground/Background

Write mode 5 is similar to Write mode 4, except that the Graphics Controller Set/Reset register (GR0) 8bit value is used as the background color to be written to the pixels selected when CPU Data = 0.

The Set/Reset register (GR0) is normally four bits. To extend this register to eight bits, set GRB[2] to '1'.

The Sequencer Map Mask Register (SMMR) is also normally four bits. To extend this register to eight bits, set GRB[2] to '1'. When the SMMR is extended to eight bits, SMMR is used to inhibit writes to selected pixels.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.19 GR9: Offset Register 0

I/O Port Address: 3CF Index: 9

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6` ´	Offset 0 [6]	R/W	'0'
5	Offset 0 [5]	R/W	'0'
4	Offset 0 [4]	R/W	'0'
3	Offset 0 [3]	R/W	'0'
2	Offset 0 [2]	R/W	'0'
1	Offset 0 [1]	R/W	'0'
0(LSB)	Offset 0 [0]	R/W	'0'

This register provides access for up to 512K of display memory with 4K granularity. The contents of this register are added to SA[18:12] when $GRB[0] = 0^{\circ}$, or when $GRB[0] = 1^{\circ}$ and address bit SA15 = 0^{\circ}.

Bit	Description
7	Reserved
6:0	Offset Register 0 [6:0]: This value is added to SA[18:12] to provide the address into display memory. This Offset register is selected when $GRB[0] = '0'$, or when $GRB[0] = '1'$, and SA15 = '0'.

The Display Memory Address, prior to being modified by address wrap controls, is called XMA. It is the sum of XA and an Offset register. XA is the address on the bus with bits 16 and 15 possibly forced to a '0', as indicated in the following table:

Configuration	XA[16]	XA[15]	XA[14:0]
128K Memory: GR6[3:2] = '00'	SA[16]	SA[15]	SA[14:0]
64K Memory: GR6[3:2] = '01' and Offset 1 Disabled: GRB[0] = '0'	·0'	SA[15]	SA[14:0]
64K Memory: GR6[3:2] = '01' <i>or</i> Offset 1 Enabled: GRB[0] = '1'	'0'	ʻ0'	SA[14:0]

The XA Address is summed with the contents of an offset register with one relative alignment according to the configuration. This is indicated in the mapping that follows:

Table 6–1.	512-Kbyte Memor	y with 4-Kbyte	Granularity	y and VGA Mapping
------------	-----------------	----------------	-------------	-------------------

'0'	'0'	XA[16]	XA[15]	SA[14]	SA[13]	SA[12]
OFF[6]	OFF[5]	OFF[4]	OFF[3]	OFF[2]	OFF[1]	OFF[0]
XMA[18]	XMA[17]	XMA[16]	XMA[15]	XMA[14]	XMA[13]	XMA[12]

76

REGISTER INFORMATION

PRELIMINARY DATA BOOK

6.1.20 GRA: Offset Register 1

I/O Port Address: 3CF Index: A

Bit	Description	Access	Reset State
7(MSB)	Reserved		' 0'
6	Offset 1 [6]	R/W	' 0'
5	Offset 1 [5]	R/W	'O'
4	Offset 1 [4]	R/W	' 0'
3	Offset 1 [3]	R/W	'0'
2	Offset 1 [2]	R/W	'0'
1	Offset 1 [1]	R/W	'0'
0(LSB)	Offset 1 [0]	R/W	'0'

This register is used to provide access to up to 512K of display memory with 4K granularity. The contents of this register are added to A[18:12] when Extension register GRB[0] = '1' and SA15 = '1'.

Bit	Description
7	Reserved
6:0	Offset Register 1: This value is added to A[18:12] to provide the address into display memory. This Offset register is selected when $GRB[0] = '1'$, and $SA15 = '1'$. If $GRB[0] = '0'$, this register is unused.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.21 GRB: Graphics Controller Mode Extensions

I/O Port Address: 3CF Index: B

Bit 7(MSB) 6 5 4 3 2 1 0(LSB)	Description Reserved Reserved Reserved Enable Eight-Byte Data Latches Enable Extended Write Modes Enable x8 Addressing Enable Offset Register 1	Access R/W R/W R/W R/W	Reset State
Bit	Description		
7:4	Reserved		
3	Enable Elght-Byte Data Latches: eight bytes wide, rather than the no '01' to the Graphics Mode register 5 If this bit is '0' and x8 Addressing is moves four latched pixels from disp	ormal four. Wr 5, GR5[1:0]. not selected (<pre>ite mode 1 is selected by writing (GRB[1] = '0'), then Write mode 1</pre>
2	 Enable Extended Write Modes: Extended mode write. In particular: 8-Byte Transfer Enabled: Up to a memory for each CPU byte transfer GR5[2] Enabled: Extended Write GR0 Extended: Register GR0 is a GR1 Extended: Register GR1 is a SR2 Extended: Register SR2 is a 	eight bytes (eig rred. modes 4 and 5 extended from 1 extended from 1	ht pixels) can be written into display 5 can be enabled four bits to eight bits four bits to eight bits
1	Enable x8 Addressing: When this bit is '1', the system address is shifted by three relative to true packed-pixel addressing, so that each system-byte address points to a different 8-pixel (8-byte) block in display memory. When this bit is '0', normal addressing is used.		
0	Enable Offset Register 1: When between Offset register 0 (GR9) an When this bit is '0', then Offset regi of the value of SA15. This bit must	d Offset regis ster 0 (GR9) v	ster 1 (GRA). will always be chosen, regardless

78 REGISTER INFORMATION

PRELIMINARY DATA BOOK

6.1.22 CR19: Interlace End

I/O Port Address: 3?5 Index: 19

Bit	Description	Access	Reset State
7(MSB)	Interlace End [7]	R/W	'0'
6	Interlace End [6]	R/W	'0'
5	Interlace End [5]	R/W	'0'
4	Interlace End [4]	R/W	'0'
3	Interlace End [3]	R/W	'0'
2	Interlace End [2]	R/W	'0'
1	Interlace End [1]	R/W	'0'
0(LSB)	Interlace End [0]	R/W	'0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This register specifies the ending horizontal character count for the Odd Field VSYNC.

Bit	Description
7:0	Interlace End [7:0]: This value is the number of characters in the last scanline of the odd field in interlaced timing. This can be adjusted to center the scanlines in the odd field halfway between scanlines in the even field. This register is typically programmed to approximately half the horizontal total.

October 1993

PRELIMINARY DATA BOOK

6.1.23 CR1A: Interlace Control

I/O Port Address: 3?5 Index: 1A

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6	Reserved		
5	Reserved		
4	Reserved		
3	Reserved		
2	Reserved		
1	Enable Double-Buffered Display Start Address	R/W	'0'
0(LSB)	Enable Interlaced	R/W	'0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description
7:2	Reserved
1	Enable Double-Buffered Display Start Address: If this bit is programmed to a '1', the Display Start Address will be updated on the VSYNC following a write to Start Address Low. This provides control of display-frame switching without the need to explicitly monitor VSYNC.
0	Enable Interlaced : If this bit is programmed to a '1', interlaced timing is enabled (i.e., interlaced sync in Text mode, and interlaced sync and video data in Graphics mode). In addition, IRQ requests are generated only at the end of odd fields (i.e., at the end of a frame). For interlaced sync and data in Graphics mode, the CRTC Scan Double (CR9[7]) must be programmed to a '0'. Graphics modes 4 and 6 must always be non-interlaced.

80

REGISTER INFORMATION

6.1.24 CR1B: Extended Display Controls

I/O Port Address: 3?5 Index: 1B

Bit	Description	Access	Reset State
7(MSB)	Disable Text Cursor Blink	R/W	' 0'
6`́	Enable Text Mode Fast-Page	R/W	'0'
5	Blanking Control	R/W	'0'
4	Reserved		
3	Reserved		
2	Reserved		
1	Enable Extended Address Wrap	R/W	'0'
0(LSB)	Extended Display Start Address Bit 16	R/W	' 0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description
7	Disable Text Cursor Blink: Setting this bit to '1' disables the text cursor blink.
6	 Enable Text Mode Fast-Page: If this bit is set to '0', all font-fetch cycles occur as random-read cycles. This bit must be set to '0' for standard VGA dual-font operation. If this bit is set to '1', Fast-page mode cycles will be used to fetch font data. This allows for Text modes with a VCLK greater than 30 MHz, as is required for 132-column modes. (See Section 6.1.48 at the end of this chapter for more details).
5	Blanking Control: If this bit is set to '0', the DAC blanking will be controlled by the blanking signal generated by the CRTC. In this case, the border can be used (register AR11). If this bit is set to '1', the DAC blanking will be controlled by Display Enable. The DAC will be blanked during the time when the border is normally displayed.
4:2	Reserved

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.24 CR1B: Extended Display Controls (cont.)

Bit Description

1 Enable Extended Address Wrap: If this bit is set to '0', the display memory address wraps at 64K maps (256K total memory). This provides VGA compatibility. Also, the CRT Controller Character Address Counter is 16-bits wide; this also assures compatibility. Even with 512K memory installed, the counter does not access the second 256K bytes.

If this bit is set to a '1', the counter is 17 bits. Also, the display memory address wraps at the total available memory size. In particular, this bit provides the following functions:

- a) If this bit is '1' and Chain-4 Addressing is selected, SR4[3] = '1', then DRAM addresses A[0] and A[1], normally supplied by CPU addresses XMA[14] and XMA[15], are supplied by addresses XMA[16] and XMA[17]. The XMA[18:12] addresses are the sum of XA[16:12] and an offset register. Refer to the description of register bit GRB[0] for definitions of XMA[18:12] and XA[16:12].
- b) If this bit is set to a '1' and CRT Controller Double Word Addressing is selected, R14[6] = '1', then DRAM addresses A[0] and A[1] — normally supplied by CRTC Character Counter addresses CA[12] and CA[13] — are supplied by addresses CA[14] and CA[15]. This provides four displayable pages in mode 13h. With four DRAMs installed, Character Counter address CA[16] is added, allowing an 128-Kbyte displayable page.

0 **Extended Display Start Address Bit 16:** This is bit 16 of the Extended-display Start address.

82

6.1.25 CR1C: Flat-Panel Interface

I/O Port Address: 3?5 Index: 1C

Bit	Description	Access	Reset State
7(MSB)	LCD Flat Panel Class Select [1]	R/W	'O'
6	LCD Flat Panel Class Select [0]	R/W	'0'
5	Enable Extra LLCLK	R/W	' 0'
4	Reserved		
3	Protect CRTC Registers for LCD	R/W	'0'
2	MCLK Suspend Mode Power-Down	R/W	'0'
1	Invert LLCLK Control	R/W	'0'
0(LSB)	Invert LFS Control	R/W	'0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

7:6

LCD Flat Panel Class Select [1:0]: These two bits select the class of LCD flat panel to be connected. The following table lists available choices:

Bit [7]	Bit [6]	Panel Class Selected
'o'	ʻ0ʻ	Single or dual-scan/dual-data monochrome panels R8x = '0' for dual-scan R8x = '1' for single-scan UD[3:0] and LD[3:0] = two sets of four-shaded pixels with frame modulation
'0'	'1'	Grayscale plasma and electro-luminescent panels LD[3:0] = 4-bit unshaded video data
'1'	'O'	STN color panels ^a (CL-GD6225/'35 only)
'1'	'1'	TFT-color panels

^a See SR1A[6] for CL-GD6235 Dual-Scan enable for STN color panels.

5 Enable Extra LLCLK: This bit enables one extra LLCLK for LCD monochrome panels that require 242 line clocks for the upper panel.

4	Reserved	

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.25 CR1C: Flat-Panel Interface (cont.)

Bit	Description	
3	Protect CRTC Registers for LCD: If this bit is set to '1', certain CRTC registers are protected for LCD panel timing. For LCD operation, some of the CRTC registers need to be write-protected, that is, the last data bits written are used for CRTC timing control, and a read/write 'Shadow' register is enabled for any subsequent I/O.	
	CRTC registers that are protected are as follows:	
	 CR6: [7:0], Vertical Total (protected value is used) CR7: [7, 5, 2, 0], Vertical Overflow bits for total and sync start CR10: [7:0], Vertical Retrace Start (protected value used for CRT Vsync) CR11: [7:0], Vertical Retrace End (protected value used for CRT Vsync) CR15: [7:0], Vertical Blanking Start CR16: [7:0], Vertical Blanking End 	
2	 MCLK Suspend Mode Power-Down: If this bit = '0', the MCLK and VCLK voltage-controlled oscillators (VCOs) will <i>not</i> power-down in Suspend mode. If this bit = '1', the MCLK and VCLK VCOs will power-down in hardware-Suspend mode, but not in software-Suspend mode. If this bit is '0', then the SUSPEND input will force LCD and Backlight power-down sequencing, but CPU access is still allowed, and the CRT outputs remain active. This mode is actually a 'cover-closed' condition that turns off only the LCD display. If this bit = '1', and CR20[3] = '0', then hardware-Suspend mode, using the SUS-PEND input pin, will power-down both the MCLK and VCLK VCOs, and access by the CPU will not be allowed. Software-Suspend mode (CR20[3] = '1') will force LCD and Backlight power-down sequencing, but CPU access is still allowed. 	
1	Invert LLCLK Control: Setting this bit to '1' inverts the LLCLK signal.	
0	Invert LFS Control: Setting this bit to '1' inverts the LFS signal.	

84

REGISTER INFORMATION

6.1.26 CR1D: Flat-Panel Display Controls

I/O Port Address: 3?5 Index: 1D

Bit	Description	Access	Reset State
7(MSB)	Enable LCD Timing Registers	R/W	'0'
6	Enable ACTi to Reset Standby	R/W	'0'
5	Enable VGA Access to Reset Standby	R/W	'O'
4	Suspend Mode Clock Source	R/W	'0'
3	Enable ACTi to Reset Backlight	R/W	'0'
2	Enable VGA Access to Reset Backligh	t R/W	'0'
1	Enable Auto-expand	R/W	'0'
0(LSB)	Enable Auto-center	R/W	'0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description
7	Enable LCD Timing Registers: This bit acts as an extra CRTC Index bit. When this bit is '1', it enables read/write of the hidden LCD Timing registers, R0X through RBX, which are mapped at the standard CRTC locations. These special registers are used to control LLCLK, LFS, and other LCD panel control signals.
6	Enable ACTI to Reset Standby Timer: When this bit is set to '1', activity on the ACTI input will reset the internal Standby timer.
5	Enable VGA Access to Reset Standby Timer: When this bit is set to '1', any valid VGA memory access will reset the internal Standby timer.
4	Suspend Mode Clock Source: This bit selects the source for the clock used dur- ing Suspend mode. If this bit is set to '0', a 32-kHz clock is expected on the 32-kHz pin. If this bit is set to '1', the 14-MHz clock, required on the Input OSC, will be divided by 432 to derive the 32-kHz clock.
3	Enable ACTI to Reset Backlight Timer: When this bit is set to '1', activity on the ACTi input will reset the Backlight control timer for the LCD.
2	Enable VGA Access to Reset Backlight Timer: When this bit is set to '1', any valid VGA memory access will reset the Backlight control timer for the LCD.

October 1993

PRELIMINARY DATA BOOK

6.1.26 CR1D: Flat-Panel Display Controls (cont.)

Bit	Description		
1	 Enable Auto-Expand: The automatic vertical expansion feature is controlled by the programming of the two sync polarity bits in Port 3C2[7:6]. '00' = Reserved (defaults to 480 lines, no vertical expansion) '01' = 400-line/200-line modes (400-line mode is for text only. 200-line mode is for double-scanned graphics only.) '10' = 350-line modes (text or graphics) '11' = 480-line mode (graphics only, no vertical expansion) 		
	Expansion Method F	or Graphics Modes:	
	200 lines:	a pattern of 2,2,3,2,2,3,2,3 (double-scan and triple-scan) expands 200 lines to 475 lines by expanding every eight lines to 19.	
	350 lines: a pattern of 1,1,2,1,1,2,1,2,1,1,2,1,1,2 (single-scar double-scan) expands 350 lines to 475 lines by exping every 14 lines to 19.		
	Expansion Method For Text Modes:		
	200 line, 8 x 8 font:	normal double-scan is applied, and an extra top line and two extra bottom lines are added to each character row (only if Max Row Scan is set for 7).	
	350 line, 8 x 14 font:	an extra two top lines and three extra bottom lines are added to each character row (only if Max Row Scan is set for 14 lines).	
	400 line, 8 x 16 font:	an extra top line and two extra bottom lines are added to each character row (only if Max Row Scan is set for 16 lines).	
0	bit CR1D[1] = '0' (bas	Setting this bit to '1' shifts LCD centering, if the auto-expand ed on sync polarities). This uses the alternate LFS (Line- programmed in LCD Timing registers R2X, R3X, R4X, R5X,	

86

REGISTER INFORMATION

6.1.27 CR1E: Flat-Panel Shading

I/O Port Address: 3?5 Index: 1E

Bit	Description	Access	Reset State	
7(MSB)	Shade Mapping [1]		R/W	'0'
6` ´	Shade Mapping [0]		R/W	' 0'
5	Reverse Video for Text Modes		R/W	'0'
4	Reverse Video for Graphics Modes		R/W	'0'
3	Maximum-generated Grayshades [1]		R/W	'0'
2	Maximum-generated Grayshades [0]		R/W	'0'
1	Contrast Enhancement		R/W	'0'
0(LSB)	Enable Planer Graphics Mode Dithering	ng	R/W	'0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit Description

7:6

Shade Mapping [1:0]: These two bits are used to program monochrome grayscale mapping (shading) according to the following table:

Bit[7]	Bit[6]	Shade Map
ʻ0'	ʻ0'	18-bit output of LUT converted to 64 shades, with NTSC weighting
'0'	ʻ1'	Green output of LUT only; 6-bit output converted to 64 shades
'1'	'0'	Direct display pixel data (4-bit planar, or lower 6-of-8 bits packed) to 16 or 64 shades
'1'	'1'	6-bit output of Attribute Controller converted to 64 shades

5 **Reverse Video for Text Modes:** If this bit is set to '1', all Text modes are displayed in reverse video.

4 **Reverse Video for Graphics Modes:** If this bit is set to '1', all Graphics modes are displayed in reverse video.

3:2 **Maximum-Generated Grayshades [1:0]:** With these two bits, grayshades are generated according to the following tables:

CR1C[7:6] = '00' — Monochrome Grayshades			
CR1E[3] CR1E[2] Number of Shades for Monochrome			
ʻ0'	'0'	16	16 frame with no dithering
'0'	'1'	64	4 frame x 16 dithering ^a
'1'	ʻ0'	64	8 frame x 8 dithering ^a
'1'	'1'	64	16 frame x 4 dithering

^a Must set CR1E[1] = '1' and R8X[7] = '1'.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.27 CR1E: Flat-Panel Shading (cont.)

Description Bit

3:2

CIRRUS LOGIC

Maximum Generated Grayshades [1:0]: (cont.)

CR1C[7:6] = '10' — STN Color				
CR1E[3]	CR1E[2]		Number of Colors per Gun	
'0'	'0'	16	16 frame modulation only (4096 colors)	
'0'	'1'	64	64 4 frame x 16 dithering (64-text, 256K-graphics)	
'1'	'0'	64	8 frame x 8 dithering (512-text, 256K-graphics)	
'1'	'1'	64	16 frame x 4 dithering (4096-text, 256K-graphics)	

1

Contrast Enhancement: This bit is used along with R8X[4] to enable text-mode contrast enhancement.

CR1E[1]	R8X[4]	Enhancement Characteristics
ʻ0'	ʻ0'	No enhancement
ʻ0'	'1'	Foreground only enhancement If BG > FG then BGC = BG; FGC = '0' If BG < FG then BGC = BG; FGC = '1'
'1'	ʻ0'	Contrast enhancement If BG > FG then BGC = BG; FGC = '0' If BG< FG then BGC = '0'; FGC = FG

BG = Background, FG = Foreground, xxC = Color

0 Enable Planar Graphics Mode Dithering: This bit is set to '0' to disable dithering in non-packed-pixel graphics mode.

6.1.28 CR1F: Flat Panel Modulation Control

I/O Port Address: 3?5 Index: 1F

Bit	Description	Access	Reset State
7(MSB)	Internal or External Modulation Control	R/W	'0'
6	MOD or Retrace LLCLK Control [6]	R/W	'0'
5	MOD or Retrace LLCLK Control [5]	R/W	'O'
4	MOD or Retrace LLCLK Control [4]	R/W	'0'
3	MOD or Retrace LLCLK Control [3]	R/W	' 0'
2	MOD or Retrace LLCLK Control [2]	R/W	' 0'
1	MOD or Retrace LLCLK Control [1]	R/W	'0'
0(LSB)	MOD or Retrace LLCLK Control [0]	R/W	' 0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This register is used to control the characteristics of the Modulation (MOD) signal for the flat panel. This function is useful for those dual-scan flat panels that generate the MOD signal based on the number of LLCLKs that appear during retrace on the lower half of the panel. When using single-scan panels, these bits will increase the line clock count for the entire panel.

NOTE: A value *must* be programmed into this register.

Bit	Description
7	Internal or External Modulation Control: This bit controls the source of the Mod- ulation signal (MOD) for the flat panel.
	If this bit = '0', the External Modulation signal is selected for the flat panel. In this case, bits $[6:0]$ can select up to 128 scanlines before the MOD signal changes polarity.
	If this bit = '1', the Internal Modulation signal is provided through the MOD pin to the flat panel. In this case, the total number of LLCLKs is determined by this register (see bits [6:0] below).
6:0	MOD or Retrace Line Clock (LLCLK) Control: If bit $7 = 0^{\circ}$, then bits [6:0] can select up to 128 scanlines before the MOD signal changes polarity.
	If bit $7 = '1'$, the total number of LLCLKs is determined by adding the content of bits [6:0] of this register to 180h (or 384 decimal).
	LLCLK = 180h + value(bits[6:0])h

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.29 CR20: Power Management Register

I/O Port Address: 3?5 Index: 20

Bit	Description	Access	Reset State
7(MSB)	Enable STANDBY	R/W	' 0'
6`́	CRT Enable	R/W	' 0'
5	LCD Enable	R/W	'0'
4	Activate Standby Mode	R/W	' O'
3	Activate Suspend Mode	R/W	'0'
2	Refresh Select [1]	R/W	'0'
1	Refresh Select [0]	R/W	'0'
0(LSB)	Text Mode Shading Control	R/W	'0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description
7	Enable STANDBY: When this bit is set to '1', the STANDBY I/O pin becomes an output used to indicate the status of Standby mode. STANDBY is 'high' when CL-GD62XX is in Standby mode. When this bit is '0', the STANDBY pin is an input that, when 'high', initiates the Standby mode.
6	CRT Enable: Setting this bit to '1' enables the analog output from the video DAC.
5	LCD Enable: This bit must be set to '1' to enable the LCD Interface. Unlike the Standby mode, when the LCD is disabled, VCLK is still running and normal high- power operation is in effect. Transitions of this bit will cause the panel power-up (logic 'low'-to-'high') and power-down (logic 'high'-to-'low') sequence to occur start- ing from VCLK or up to the point of VCLK shutdown. That is, the panel BIAS, Back- light, logic supply, and drive signals will be enabled or disabled. When this bit = '1', the Line Frame Signal (LFS) and LCD Line Clock (LLCLK) LCD Timing signals for monochrome panels are generated. These bits are generated from the LCD Timing registers, R0X through RBX. For TFT-color panels, the CRTC-programmed sync timing is used. Also, VSYNC and HSYNC signals are sent to the CRT outputs and to the LFS and LLCLK out- puts. In addition, when LCD operation is enabled, the Display Enable signal con- trols the display data. Therefore, Border is <i>not</i> supported.

90

6.1.29 CR20: Power Management Register (cont.)

Bit	Description	
5	LCD Enable (cont.):	
When this i	bit = '1', some of the VGA r	egister bits are redefined for LCDs as follows:
	SR1, 2, 3 VCLK/2:	The LCD always gets a shift clock at 1/4 the VCLK rate. This bit selects the horizontally-locked timing for 40- or 80-column modes (except for mode 13h).
	SR1[0]:	8/9-dot characters, 'locked' and set for 8-dots per character.
	AR13:	Pixel panning, if SR1[0] ='0', then the effect of AR13[4] is masked, and a value of either '8h' or '0h' is equal to 'no shift'.
	MISC Output (3C2):	CRT Sync polarity will always be negative/negative; sync polarity bits control Vertical Expansion/Vertical Centering.

- NOTE: Clock Select bits do not need to be locked. The clock programming registers should all be set to produce the same frequency (as required by the LCD).
- Activate Standby Mode: Setting this bit to '1' overrides the current internal Standby timer setting and immediately places the device into Standby mode.
 Activate Suspend Mode: Setting this bit to '1' initiates software-Suspend mode. In this mode, the power-down sequence is started to blank the panel; however, the CPU can still access video memory, RAMDAC, and I/O registers. Also, the hardware-Suspend mode, using the SUSPEND input pin, is disabled as long as this bit is '1'.

NOTE: hardware-Suspend mode also requires CR1C[2] = '1'.

2:1 **Refresh Select:** The programming of these two bits control the type of refresh applied to the video DRAMs during Suspend mode as follows.

Bit [2]	Bit [1]	Refresh Type
ʻ0'	ʻ0'	8-ms refresh cycle, CAS*-before-RAS* refresh.
,0,	'1'	64-ms refresh cycle, CAS*-before-RAS* refresh.
'1'	'0'	Self-refresh.
'1'	'1'	No refresh. All clocks inputs are disabled, and RAS*/CAS* outputs are 'high'.

0

Text Mode Shading Control: If this bit is set to '0', text shades are derived directly from foreground/background data. If this bit is set to '1', text shades are derived in the same way as graphics, that is, by using CR1E[7:6].

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.30 CR21: Power-Down Timer Control

I/O Port Address: 3?5 Index: 21

Bit	Description	Access	Reset State
7(MSB)	Timer for Backlight Control (FPBACK) [3]	R/W	'0'
6` ´	Timer for Backlight Control (FPBACK) [2]	R/W	'0'
5	Timer for Backlight Control (FPBACK) [1]	R/W	'0'
4	Timer for Backlight Control (FPBACK) [0]	R/W	'0'
3	Timer for Standby Mode Control [3]	R/W	'0'
2	Timer for Standby Mode Control [2]	R/W	'0'
1	Timer for Standby Mode Control [1]	R/W	' O'
0(LSB)	Timer for Standby Mode Control [0]	R/W	'0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Timers are set in increments of one to 15 minutes. A value of zero disables the timer. For the CL-GD62XX, the timers actually count 64 seconds per minute, minus 32 seconds from the total (i.e., [count • 64 sec.] - 32 sec.). Therefore, a setting of 15 minutes (Fh) will result in an actual time of 15.5 minutes. See table below for typical power-down timer settings.

Bit	Description
7:4	Timer for Backlight Control (FPBACK) [3:0]: This is the programmed value for the internal Backlight timer.
	Seconds = $(value \cdot 64) - 32$
3:0	Timer for Standby Mode Control [3:0]: This is the programmed value for the internal Standby Mode Timer.
	Seconds = (value \cdot 64) - 32

Table 6–2.	Typical	Power-Down	Timer	Settings
------------	---------	-------------------	-------	----------

	Backlight C	Control Bits	3			Approximate
[7]	[6]	[5]	[4]	Hex	Actual Seconds	
	Standby Control Bits				Code (Seconds)	Delay Time (Minutes)
[3]	[2]	[1]	[0]			
ʻ0'	ʻ0'	'0'	ʻ0'	Oh	disabled	disabled
ʻ0'	,0,	ʻ0'	'1'	1h	32	0.5
'0'	'1'	ʻ0'	'1'	5h	288	4.8
ʻ0'	'1'	'1'	'1'	7h	416	6.9
'1'	ʻ0'	'1'	ʻ0'	Ah	608	10.1
'1'	'1'	'1'	'1'	Fh	928	15.5

92

REGISTER INFORMATION

PRELIMINARY DATA BOOK

6.1.31 CR23: Suspend Mode Input Switch Debounce Timer

I/O Port Address: 3?5 Index: 23

Bit	Description	Access	Reset State
7(MSB)	SUSPEND Input Debounce Timer [3]	R/W	' 0'
6	SUSPEND Input Debounce Timer [2]	R/W	'0'
5	SUSPEND Input Debounce Timer [1]	R/W	' 0'
4	SUSPEND Input Debounce Timer [0]	R/W	' O'
3	FPBACK Control Override	R/W	'O'
2	FPBACK Output State	R/W	'0'
1	FPVCC Control Override	R/W	'0'
0(LSB)	FPVCC Output State	R/W	'0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description
7:4	SUSPEND Input Debounce Timer [3:0]: These bits define the number of sec- onds the SUSPEND input must remain active (either 'high' or 'low' as defined by SR8[3]) and stable, before the device enters Suspend mode. Set for 1 to 15 seconds. A '0000' setting disables the debounce function.
3	FPBACK Control Override : Setting this bit to '1' overrides the FPBACK Standby mode, and enables CR23[2] to control the output state of FPBACK.
2	FPBACK Output State: If CR23[3] = '1', then this bit defines the '1' or '0' output state of FPBACK.
1	FPVCC Control Override : Setting this bit to '1' overrides the FPVCC Standby mode, and enables CR23[0] to control the output state of FPVCC.
0	FPVCC Output State: If CR23[1] = '1' this bit then defines the '1' or '0' output state of FPVCC.

October 1993

PRELIMINARY DATA BOOK

6.1.32 CR25: CL-GD62XX Part Status Register

I/O Port Address: 3?5 Index: 25

Bit	Description	Access	Reset State
7(MSB)	PSR [7]	R	' 0'
6	PSR [6]	R	'0'
5	PSR [5]	R	'0'
4	PSR [4]	R	'0'
3	PSR [3]	R	' 0'
2	PSR [2]	R	'0'
1	PSR [1]	R	'0'
0(LSB)	PSR 101	R	' 0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This read-only register is used for factory testing and internal tracking. Application programs should *not* use contents read from this register.

Bit	Description
7:0	Part Status Values: These bits are used only for factory testing and internal track- ing.

94

REGISTER INFORMATION

6.1.33 CR27: CL-GD62XX Part ID Register

I/O Port Address: 3?5 Index: 27

Bit	Description	Access	Reset State
7(MSB)	Chip ID [3]	R	Refer to table below
6	Chip ID [2]	R	Refer to table below
5	Chip ID [1]	R	Refer to table below
4	Chip ID [0]	R	Refer to table below
3	Static bit	R	'1'
2	Chip Revision Level [2]	R	Revision-dependent
1	Chip Revision Level [1]	R	Revision-dependent
0(LSB)	Chip Revision Level [0]	R	Revision-dependent

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This read-only register will return a value that uniquely identifies the chip.

'0000'

'1000'

'1100'

sion level of the chip.

Bit	Description		
7:4	Chip ID [1:0]: This 2-bit the following table:	field contains a value t	that identifies the chip according to
	Identification Value Bits[7:4]	Chip	

CL-GD6205

CL-GD6215

CL-GD6225

	'0001'	CL-GD6235	
3	Always '1'		
2:0	Chip Revision Level [2	2:0]: This 3-bit field co	ntains a value that identifies the revi-

October 1993

PRELIMINARY DATA BOOK

6.1.34 CR29: CL-GD62XX Configuration Register

I/O Port Address: 3?5 Index: 27

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6	Reserved		
5	Power-Up/Down Cycling Activity	R	'0'
4	NPD Input Status	R	ʻOʻ
3	DRAM Type Selected	R	'0'
2	Local Bus Type 1 Status	R	'0'
1	Local Bus Type 0 Status	R	'0'
0	ISA/Local Bus Status	R	'0'

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This read-only register identifies the configuration of the memory and bus interface selected for the chip.

Bit	Description
7:6	Reserved
5	Power-Up/Down Cycling Activity: This bit is '1' while the device is going through a power-up or power-down sequence. It can be read in all modes, except hardware-Suspend mode, which locks out access to all registers.
4	NPD Input Status: This bit is '1' when the NPD pin is 'high', indicating that the internal Standby and Backlight Power-down Timers are disabled.
3	DRAM Type Selected: When this bit = '0', the Dual-Write-Enable type DRAMs are selected, when '1', the Dual-CAS type DRAMs are selected.
2	Local Bus Type 1 (LBT1/SMEMW*) Status: Defines CPU bus type. See table below.
1	Local Bus Type 0 (LBT0/REF*) Status: Defines CPU bus type. See table below.
0	ISA/Local Bus (BUSCONF*) Status: Defines CPU bus type. See table below.

Bus Type	BUSCONF* CR29[0]	LBT0/REF* CR29[1]	LBT1/SMEMW* CR29[2]
ISA bus	'1'	don't care	don't care
PI bus	ʻ0'	ʻ0'	ʻ0'
'386SXL	ʻ0'	'1'	ʻ0'
'386DXL	ʻ0'	,0,	'1'
'486SX/DX	ʻ0'	(1)	'1'

96

REGISTER INFORMATION

PRELIMINARY DATA BOOK

6.1.35 R0X: LCD Timing Register — Horizontal Total for 80-Column and Mode 13h

I/O Port Address: 3?5

Index: 0 — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	Horizontal Total/Scratch Pad	R/W	NAMust be set by BIOS
6	Horizontal Total/Scratch Pad	R/W	NAMust be set by BIOS
5	Horizontal Total/Scratch Pad	R/W	NA-Must be set by BIOS
4	Horizontal Total/Scratch Pad	R/W	NAMust be set by BIOS
3	Horizontal Total/Scratch Pad	R/W	NA—Must be set by BIOS
2	Horizontal Total/Scratch Pad	R/W	NAMust be set by BIOS
1	Horizontal Total/Scratch Pad	R/W	NAMust be set by BIOS
0(LSB)	Horizontal Total/Scratch Pad	R/W	NA-Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description
7:0	Horizontal Total for 80-Column Display: When $R1X[7] = '1'$, this register defines the upper eight bits of the horizontal total of an 80-column display. When $R1X[7] = '0'$, this register may be used as a Scratch-pad register.
	This register controls horizontal LCD timing when $SR1[3] = 0^{\circ}$ or $GR5[6] = 1^{\circ}$.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.36 R1X: LCD Timing Register — Horizontal Total Enable and 40-Column Horizontal Total

I/O Port Address: 3?5

Index: 1 — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	Horizontal Total Enable	R/W	NA—Must be set by BIOS
6` ´	Horizontal Total/Scratch Pad	R/W	NA—Must be set by BIOS
5	Horizontal Total/Scratch Pad	R/W	NA—Must be set by BIOS
4	Horizontal Total/Scratch Pad	R/W	NA—Must be set by BIOS
3	Horizontal Total/Scratch Pad	R/W	NA—Must be set by BIOS
2	Horizontal Total/Scratch Pad	R/W	NA—Must be set by BIOS
1	Horizontal Total/Scratch Pad	R/W	NA—Must be set by BIOS
0(LSB)	Horizontal Total/Scratch Pad	R/W	NA-Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description
7	Horizontal Total Enable: When this bit is '1', register R0X[7:0] defines the hori- zontal total for an 80-column display, and R1X[6:0] defines the horizontal total for a 40-column display. When this bit is '0', registers R0X[7:0] AND R1X[6:0] are Scratch-pad registers.
6:0	Horizontal Total for 40-Column Display: When $R1X[7] = '1'$, these seven bits define the Horizontal Total of an 40-column display. When $R1X[7] = '0'$, these seven bits may be used as a Scratch-pad register. This register controls horizontal LCD timing when $SR1[3] = '1'$ and $GR5[6] = '0'$.

98

REGISTER INFORMATION

6.1.37 R2X: LCD Timing — LFS Vertical Counter Value Compare (3C2[7:6] = '11')

I/O Port Address: 3?5

Index: 2 — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
6	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
5	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
4	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
3	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
2	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
1	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
0(LSB)	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This register defines the number of lines that data is delayed from the frame start. This is the least-significant eight bits of a 10-bit value. The most-significant two bits are stored in register R6X[7:6].

Bit	Description
7:0	LFS Vertical Counter Value Compare: This is used when $3C2[7:6] = '11'$, if Automatic Centering is <i>not</i> selected, CR1D[0] = '1'; Automatic Expand is disabled, CR1D[1] = '0'.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.38 R3X: LCD Timing — LFS Vertical Counter Value Compare (3C2[7:6] = '10')

I/O Port Address: 3?5

Index: 3 — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
6` ´	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
5	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
4	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
3	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
2	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
1	LFS Vert. Counter Value	R/W	NAMust be set by BIOS
0(LSB)	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This register defines the number of lines that data is delayed from the frame start. This is the least-significant eight bits of a 10-bit value. The most-significant two bits are stored in register R6X[5:4].

Bit	Description
7:0	LFS Vertical Counter Value Compare: This is used when $3C2[7:6] = '10'$, if Automatic Centering is selected, CR1D[0] = '1'; Automatic Expand is disabled, CR1D[1] = '0'.

6.1.39 R4X: LCD Timing — LFS Vertical Counter Value Compare (3C2[7:6] = '01')

I/O Port Address: 3?5

Index: 4 — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
6	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
5	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
4	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
3	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
2	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
1	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS
0(LSB)	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This register defines the number of lines that data is delayed from the frame start. This is the least-significant eight bits of a 10-bit value. The most-significant two bits are stored in register R6X[3:2].

Bit	Description
7:0	LFS Vertical Counter Value Compare: This is used when 3C2[7:6] = '01', if Automatic Centering is selected, CR1D[0] = '1'; Automatic Expand is disabled, CR1D[1] = '0'.

October 1993

PRELIMINARY DATA BOOK

6.1.40 R5X: LCD Timing — LFS Vertical Counter Value Compare (3C2[7:6] = '00')

I/O Port Address: 3?5

Index: 5 --- This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
6	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
5	LFS Vert. Counter Value	R/W	NA—Must be set by BIOS
4	LFS Vert. Counter Value	R/W	NAMust be set by BIOS
3	LFS Vert. Counter Value	R/W	NAMust be set by BIOS
2	LFS Vert. Counter Value	R/W	NAMust be set by BIOS
1	LFS Vert. Counter Value	R/W	NAMust be set by BIOS
0(LSB)	LFS Vert. Counter Value	R/W	NA-Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This register defines the number of lines that data is delayed from the frame start. This is the least-significant eight bits of a 10-bit value. The most-significant two bits are stored in register R6X[1:0].

Bit	Description
7:0	LFS Vertical Counter Value Compare : This is used when $3C2[7:6] = '00'$, if automatic centering is selected, $CR1D[0] = '1'$; Automatic Expand is disabled, $CR1D[1] = '0'$.

102

REGISTER INFORMATION

6.1.41 R6X: LCD Timing — Overflow (Most-Significant) Bits for LFS Signal Compare

I/O Port Address: 3?5

Index: 6 — This register is only accessible when CR1D[7] = '1'.

Bit	Description	Access	Reset State
7(MSB)	LFS Compare Bit	R/W	NAMust be set by BIOS
6	LFS Compare Bit	R/W	NA-Must be set by BIOS
5	LFS Compare Bit	R/W	NAMust be set by BIOS
4	LFS Compare Bit	R/W	NA-Must be set by BIOS
3	LFS Compare Bit	R/W	NA—Must be set by BIOS
2	LFS Compare Bit	R/W	NA—Must be set by BIOS
1	LFS Compare Bit	R/W	NA—Must be set by BIOS
0(LSB)	LFS Compare Bit	R/W	NA—Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

This register defines the most-significant two bits for the LFS Vertical Counter Value Compare registers.

Bit	Description
7:6	LFS Compare Data Bits[9:8]: When 3C2[7:6] = '11', these bits are appended as the most-significant two bits of register R2X, creating a 10-bit value.
5:4	LFS Compare Data Bits[9:8]: When 3C2[7:6] = '10', these bits are appended as the most-significant two bits of register R3X, creating a 10-bit value.
3:2	LFS Compare Data Bits[9:8]: When 3C2[7:6] = '01', these bits are appended as the most-significant two bits of register R4X, creating a 10-bit value.
1:0	LFS Compare Data Bits[9:8]: When 3C2[7:6] = '00', these bits are appended as the most-significant two bits of register R5X, creating a 10-bit value.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

6.1.42 R7X: LCD Timing — Panel Signal Control for Color TFT Panels

I/O Port Address: 3?5

Index: 7 — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	CRT-only in Standby/Suspend	R/W	NA—Must be set by BIOS
6	Reserved		
5	Reserved		
4	Reserved		
3	LFS Output	R/W	NA—Must be set by BIOS
2	LLCLK Output	R/W	NA-Must be set by BIOS
1	FPVDCLK Inversion	R/W	NA—Must be set by BIOS
0(LSB)	FPVDCLK Enable	R/W	NA—Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description
7	CRT-only Enable for Standby and Suspend Modes: When this bit is '1', Standby and Suspend modes are only available in CRT-only mode. When this bit is '0', Standby and Suspend modes are only available in LCD-only mode.
6:4	Reserved
3	LFS Output: When this bit is '0', the LFS output pin drives STN and DE-type TFT panels. When this bit is '1', the LFS output pin drives the VSYNC input for non-DE-type TFT panels.
2	LLCLK Output: When this bit is '0', the LLCLK output pin drives STN and DE-type TFT panels. When this bit is '1', the LLCLK output pin drives the HSYNC input for non-DE type TFT panels.
1	FPVDCLK Inversion: When this bit is '1', the FPVDCLK is inverted, allowing panel data to be latched on the logic 'low'-to-'high' transition of FPVDCLK. When this bit is '0', panel data is latched on the logic 'high'-to-'low' transition of FPVDCLK.
0	FPVDCLK Enable: When this bit is '0', the FPVDCLK is gated by display enable, and remains active only during display time. When this bit is '1', FPVDCLK is always active (free-running).

104

REGISTER INFORMATION

6.1.43 R8X: LCD Timing — STN Color Panel Data Format

I/O Port Address: 3?5

Index: 8 — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	Alternate Grayscale Mode Select	R/W	NA-Must be set by BIOS
6	Reserved		
5	Dual-Scan/Single-Scan Mono. Select	R/W	NAMust be set by BIOS
4	Foreground Text Enhancement	R/W	NA—Must be set by BIOS
3	Line-Pulse Width Select	R/W	NA—Must be set by BIOS
2	Reserved		
1	Shift-Clock Select for STN Panels	R/W	NA—Must be set by BIOS
0(LSB)	8-/16-Bit Data Interface Select	R/W	NA—Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description		
7	Alternate Gr mode for mor	ayscale Mode	Select: When this bit is '1', the 'alternate' grayscale s is selected. This bit is '0', for normal operation.
6	Reserved		
5	Dual-Scan/Single-Scan Monochrome Panel Select: When this bit is '0', dual- scan monochrome panels are selected. When this bit is '1', single-scan mono- chrome panels are selected.		
4	Foreground ment is enab played.	Text Enhance led (see CR1E	nent: When this bit is '1', foreground text enhance 1] for details). When this bit is '0', normal text is dis
3		oth is selected.	n: When this bit is '1' and R7X[2] = '0', a shortened When this bit is '0', line-pulse width is controlled by
	R7X[2]	R8X[3]	Line-Pulse Width Option
	ʻ0'	ʻ0'	LP width controlled by CR4 and CR5; typical = 3.8 µs
	,0, ,0,	'0' '1'	LP width controlled by CR4 and CR5; typical = 3.8 μs 300 ns fixed pulse width (color STN panels only)
2	ʻ0'	'1'	300 ns fixed pulse width (color STN panels only)
2	°0' '1' Reserved Shift-Clock S plied to STN	'1' '0' Select for STN panels, FPVDC	300 ns fixed pulse width (color STN panels only)

October 1993

PRELIMINARY DATA BOOK

6.1.44 R9X: LCD Timing — TFT Panel Data Format

I/O Port Address: 3?5

Index: 9 — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6	Shift-Clock Delay	R/W	NA—Must be set by BIOS
5	Shift-Clock Delay	R/W	NAMust be set by BIOS
4	Shift-Clock Delay	R/W	NAMust be set by BIOS
3	Reserved		-
2	Reserved		
1	Data Format	R/W	NA-Must be set by BIOS
0(LSB)	Data Format	R/W	NA-Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description		
7	Reserved		
6:4	internal character clock	se bits select a 0-to-7 shift(pixel)-clock delay fror counter (8 VCLKs per Character Clock) to TFT HS he MSB. Increasing the value in this register move left.	YNC
3:2	Reserved		
1:0		These two bits select the data format for the TFT p below. See the Panel Interface Tables section in	
	CL-GD62XX Applications information.	s Book for specific panel types and detailed conne	
	information.	s Book for specific panel types and detailed conne	
	information.	S Book for specific panel types and detailed conner	

106

6.1.45 RAX: LCD Timing — TFT Panel HSYNC Position Control

I/O Port Address: 3?5

Index: A — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	TFT Panel HSYNC Counter	R/W	NAMust be set by BIOS
6	TFT Panel HSYNC Counter	R/W	NA-Must be set by BIOS
5	TFT Panel HSYNC Counter	R/W	NAMust be set by BIOS
4	TFT Panel HSYNC Counter	R/W	NA-Must be set by BIOS
3	TFT Panel HSYNC Counter	R/W	NA-Must be set by BIOS
2	TFT Panel HSYNC Counter	R/W	NA-Must be set by BIOS
1	TFT Panel HSYNC Counter	R/W	NA-Must be set by BIOS
0(LSB)	TFT Panel HSYNC Counter	R/W	NA—Must be set by BIOS

NOTE: The '?' in the above register address is 'B' in Monochrome mode and 'D' in Color mode.

Bit	Description
7:0	TFT Panel HSYNC Position Control Counter: This register contains the 8-bit horizontal-counter value for generating the HSYNC output. This register is set in multiples of eight VCLKs (80-column character clocks). Increasing the value in this register moves the image on the LCD to the left.

October 1993

PRELIMINARY DATA BOOK

6.1.46 RBX: LCD Timing — Special Functions for CL-GD6235 Only

I/O Port Address: 3?5

Index: B — This register is only accessible when CR1D[7] = '1'

Bit	Description	Access	Reset State
7(MSB)	Reserved		
6`́	Reserved		
5	Reserved		
4	Reserved		
3	Reserved		
2	Reserved		
1	Reserved		
0	Reserved		
NOTE: The '?' in the	above register address is "	B' in Monochrome mode and '	D' in Color mode.

Bit	Description	
7:0	Reserved	

108 REGISTER INFORMATION

6.2 132-Column Alphanumeric Mode

This Extended Video mode is for the CRT display only. It is selected by setting CR1B[6] to '1'. For a 31.5-kHz HSYNC rate, the Video Dot Clock (VCLK) should be set to 41.164 MHz (registers SRB/C/D/E). The Sequencer is programmed for 8-dot character intervals with a non-divided Dot Clock.

The Character Map(s), SR3[5:0], should be loaded while this mode is selected, because the memory organization of the Character Maps differs from the normal VGA case. Loading the Character Maps requires no special address translation because the CL-GD62XX re-maps Video Memory automatically when this mode is selected.

The Character Maps should be loaded by unchained (sequential) addressing, with the CL-GD62XX mapped into System Address Segment A0000 for 64-Kbyte locations, and with the Sequencer Map Mask register, programmed to enable writing to Plane 2. Subsequently, the Sequencer should be programmed for Chain-2 Addressing with Planes 0 and 1 enabled, as is normally the case in an alphanumeric mode.

The 132-column alphanumeric mode does not support the simultaneous display of two different character maps, as determined by character attribute bit 3 in the normal VGA operation. However, by programming the Sequencer Character Map Select register 3C5, Index 03 bits[2:0] with a Character Map number, one of eight Character Maps can be selected for the entire screen display. The Character Map number represents one 8-Kbyte segment of the total available 64 Kbytes of Character Maps in this mode. Each Character Map number corresponds to an 8-Kbyte offset from the initial System Address segment where the Maps are loaded initially (Map 0 is loaded into A0000-A1FFF, Map 1 into A2000-A3FFF, etc.). Note the functional change of the Character Map Select Register bits[2:0] when this mode is selected; the remaining bits[5:3] are not used.

In the 132-column alphanumeric mode, the CL-GD62XX uses both Plane 2 and Plane 3 physical DRAM pages for Character Map storage. However, the Character Maps appear to be loaded into Plane 2 only. The character-generator dot patterns of all lower-128-character codes are re-mapped into Plane 2, and all upper-128-character codes are re-mapped into Plane 3. Only half of each 64-Kbyte physical plane is used, providing a total of eight 8-Kbyte Character Maps.

While using the 132-column alphanumeric mode, the following CRT Controller parameters are recommended:

Data	Register
9Fh	Horizontal Total (Index 0)
83h	Horizontal Display Enable End (Index 1)
84h	Start Horizontal Blanking (Index 2)
82h	End Horizontal Blanking (Index 3)
8Ah	Start Horizontal Retrace (Index 4)
9Eh	End Horizontal Retrace (Index 5)
42h	Offset (Index 13H)

6.2.1 Write Buffer and Display FIFO

Video memory data FIFO depth is four 32-bit levels for all text modes and eight levels for all graphics modes. The write buffer may be selected to be either one or four levels deep by 16-bit by SRF bit D6.

If the Color Don't Care register (GR7) is set to 00h and Read mode 1 is selected (GR5[3] = 1), then a CPU memory read cycle will still load the internal data latches, but will not have wait states added. This is useful for both 16- and 256-color block moves where the CPU is using Write mode 1 to move data with the data latches and never actually reads any screen data.

6.3 Hardware Cursor

The hardware cursor is used in 16-color Planar and 256-color Packed-pixel modes to provide a pointer for graphical user interfaces. A hardware cursor (mouse pointer) will improve performance because the screen data will not have to be rewritten when the cursor is moved. Also, it will improve the appearance of the screen by providing a smoothly moving cursor. The cursor is a 32 x 32-pixel array of two planes:

Cursor Plane 0 = Invert plane Cursor Plane 1 = Opaque plane

Each pixel of the cursor 'floats' over a corresponding pixel of the screen. The Opaque Cursor Plane, when set to '1', selects the VGA video data or cursor pixel. The cursor is one of two colors; for the internal video

October 1993

PRELIMINARY DATA BOOK

DAC the cursor color is supplied by two extra palette locations for foreground and background colors (see Table 6-3, on page 111 and register SR12[1] on page 66 for further explanation).

The Invert Cursor Plane controls the selected video data. When the Invert bit is a '1' and the Opaque bit is a '0', the VGA video data D[7:0] is the inversion of the internal video DAC data. The video data is inverted after the effect of any other VGA registers. The Invert bit controls the cursor color ('0' or '1') when the Opaque bit is a '1'. The cursor therefore has four possible states for each pixel:

'00' = Transparent

- '01' = Inverted VGA video data
- '10' = Cursor Color 0
- '11' = Cursor Color 1

The cursor position is defined relative to the upper-left corner of the active display screen (border is not included) and sets the upper-left corner of the cursor. The cursor location X is in pixels and Y is in scanlines. The cursor position on the screen is changed only on the VSYNC, following a write to the Y Location register (SEQ Index 11h). The location '00' is the first pixel of the top-active video scanline.

The cursor data is located in the upper 16K of display memory at all times (upper 4K in each memory map). There are four possible cursor patterns that are

selected by the Cursor Pattern Offset register (SEQ Index 13h). Each cursor pattern is 256 bytes; 64 bytes in each logical memory map. The first 32 bytes of each memory map are cursor plane 0, the last 32 bytes are Cursor Plane 1. One byte from each memory map forms the Cursor Plane for each scanline. Map 0 data is displayed first, with bit D[7] being the first pixel. The CPU can write cursor data either in Unchained mode or in Chain-4 mode with true packed-pixel addressing.

In packed-pixel addressing, with Chain-4 addressing selected, the cursor-data write sequence is all of Cursor Plane 0, followed by Cursor Plane 1. For example, if SR13h = 00 (cursor pattern address offset), then the first byte of the first scanline of the Cursor Plane 0 is located at address 1F000h in Map 0 (for 512K).

The Cursor CRT-controller data-read replaces the DRAM refresh on the active-cursor display lines. The cursor data read is two CAS* Page Reads: one for Cursor Plane 0 and one for Cursor Plane 1. All four display memory maps are read. The 17-bit (for 512K) CRT-controller address is generated as follows:

HCR[17:14] = all '1'sHCR[13:8] = Cursor Pattern Offset register SR13[5:0] HCR[7] = Cursor Plane Read Select

110 REGISTER INFORMATION

6.4 Graphics Hardware Cursor

Table 4 provides information for programming the CL-GD62XX extension registers for the graphics hardware cursor.

Table 6-3. F	Programming f	the Graphics	Hardware Cursor
--------------	---------------	--------------	-----------------

	Pro	gram:		
То:	Index or Extension Register	I/O Port Address	Register Bits	Bit Value
Disable graphics hardware cursor (default)	SR12	3C5h	[0]	ʻ0'
Enable the graphics hardware cursor	SR12	3C5h	[0]	'†'
Allow access to a graphics palette video DAC Color Look-up table that is VGA-compatible	SR12	3C5h	[1]	ʻ0'
Allow for a cursor that is completely indepen- dent of the display data colors ^a	SR12	3C5h	[1]	'1'
	Indexes: 10, 30, 50, 70, 90, B0, D0, F0	3C4h/3C5h	[7:5]	20470
Position the graphics hardware cursor ^b on the horizontal X axis ^c	Corresponding Extension registers: SR10, 30, 50, 70, 90, B0, D0, F0	3C4h/3C5h	[7:0]	20470
	Indexes: 11, 31, 51, 71, 91, B1, D1, F1	3C4h/3C5h	[7:5]	20470
Position the graphics hardware cursor ^b on the vertical Y axis ^c	Corresponding Extension registers: SR11, 31, 51, 71, 91, B1, D1, F1	3C4h/3C5h	[7:0]	20470
Select the graphics hardware cursor pattern offset (four patterns are available)	SR13	3C5h	[1:0]	'00','01' '10','11'

^a DAC LUT entries 256, 257, and 258 will be accessible as locations x0h, xFh, and x2h, respectively.

Entry 256 will be used as the cursor background. Entry 257 will be used as the cursor foreground.

Entry 258 will be used to provide a selected overscan color.

^b The cursor position is defined relative to the upper-left corner of the active display screen (border is not included), and sets the upper-left corner of the 32 x 32-bit cursor.

^c Cursor location X is in pixels; cursor location Y is in scanlines.

October 1993

PRELIMINARY DATA BOOK

REGISTER INFORMATION

7. ELECTRICAL SPECIFICATIONS

7.1 Absolute Maximum Ratings

Ambient temperature under bias	0° to 70° C
Storage temperature	65° to 150° C
Voltage on any pin	V_{SS} -0.5V to $V_{CC/DD}$ + 0.5V
Operating power dissipation	1.5 Watts
Power supply voltage	
Injection current (latch-up testing)	100 mA

NOTES:

- System components should be run below the stress ratings shown in the absolute maximum ratings list. If system components are run at ratings at or above these stress ratings, the system components may be permanently damaged.
- 2) Functional operation at or above any of the conditions indicated in the absolute maximum ratings is not implied.
- Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

7.2 DC Specifications (Digital)

(VCC = VDD = 5.0V \pm 0.25V (or VDD = 3.3V \pm 0.3V) TA = 0° to 70° C, unless otherwise specified)

Symbol	Parameter	MIN	MAX	Units	Conditions	Note
V _{DD}	Power Supply Voltage	4.75	5.25	Volts	Normal Operation	
V _{DD} (3.3V)	Power Supply Voltage	3.0	3.6	Volts	Normal Operation	
VIL	Input LOW Voltage (TTL)	0	0.8	Volts	3.0V < V _{DD} < 5.25V	
VIH	Input HIGH Voltage (TTL)	2.0	V _{DD} + 0.5	Volts	3.0V < V _{DD} < 5.25V	
V _{IHC}	Input HIGH Voltage (CMOS)	0.7V _{DD}	V _{DD} + 0.5	Volts	3.0V < V _{DD} < 5.25V	
V _{ILC}	Input LOW Voltage (CMOS)	-0.5	0.3V _{DD}	Volts	3.0V < V _{DD} < 5.25V	
V _{OHC}	Output HIGH Voltage (CMOS)	0.9V _{DD}		Volts	l _{OHC} = -200 μA	
V _{OLC}	Output LOW Voltage (CMOS)		0.1V _{DD}	Volts	I _{OLC} = 3.2 mA	
V _{OL}	Output LOW Voltage		0.4	Volts	I _{OL} = (See Table 7- 0)	1
V _{OH}	Output HIGH Voltage	2.4		Volts	I _{OH} = (See Table 7– 0)	2
I _{CC1}	Power Supply Current		140	mA	CRT only Operation	3
I _{CC2}	Power Supply Current		50	mA	LCD only Operation	3
I _{CC3}	Power Supply Current		1.0	mA	Hdwr. Suspend mode	3
I _{IL}	Input LOW Current		-10	μΑ	V _{IN} = 0.0V	
IIH	Input HIGH Current		10	μΑ	V _{IN} = V _{DD}	
loz	Output Leakage Current	-10	10	μΑ	0 < V _{OUT} < V _{DD}	4
CIN	Input Capacitance	-	10	pF		5
COUT	Output Capacitance		10	pF		5

NOTES:

1) Data outputs (SD[15:0]) rated at I_{OL} = 12 mA at V_{OL} = 0.4V, will sink I_{OL} = 24 mA at V_{OL} = 0.5V.

2) Data outputs (SD[15:0]) rated at I_{OH} = -3.0 mA at V_{OH} = 2.4V, will source I_{OH} = -15 mA at V_{OH} = 2.0V.

3) $V_{CC} = 3.3V$; FPVDCLK = 28 MHz; MCLK = 33 MHz.

4) This is a measure of Three-state output leakage current when in High-impedance (High-Z) mode.

5) This is not 100% tested, but is periodically sample tested.

October 1993

PRELIMINARY DATA BOOK

Table 7–0. C	Output L	-oading Values	
--------------	----------	----------------	--

Output Pins	I _{ОН} (mA)	l _{OL} (mA)	LOAD (pF)
SD[15:0]	-3.0	8.0	100
IOCHRDY	-3.0	8.0	100
IOCS16*	-	8.0	100
MEMCS16*	-	8.0	100
IRQ	-3.0	8.0	100
SW1, SW3	-3.0	8.0	50
HSYNC	-12	12	50
VSYNC	-12	12	50
SUD[7:0]	-12	12	50
R5, R4	-12	12	50
LD[3:0]	-12	12	50
UD[3:0]	-12	12	50
DE	-12	12	50
FPVDCLK	-12	12	250

Table 7–0. Output Loading Va	alues (cont.)
------------------------------	---------------

Output Pins	I _{OH} (mA)	l _{OL} (mA)	LOAD (pF)
LLCLK	-12	12	50
LFS	-12	12	50
MOD	-3.0	3.0	20
MA[9:0]	-6.0	6.0	35
MD[15:0]	-6.0	6.0	35
CAS*	-6.0	6.0	35
RAS*	-6.0	6.0	35
OE*	-6.0	6.0	35
WE[1:0]	-6.0	6.0	35
FPVCC	-12	12	35
FPVEE	-12	12	35
FPBACK	-12	12	35
STANDBY	-6.0	6.0	35
EROM*	-6.0	6.0	35

7.3 DC Specifications (Palette DAC)

(V_{CC} = 3.3V \pm 0.3V, T_A = 0° to 70° C, unless otherwise specified)

Symbol	Parameter	MIN	MAX	Units	Conditions
AV _{DD2,3}	DAC Supply Voltage	3.00	3.60	Volts	Normal Operation
I _{DD2,3}	Analog Supply Current		90	mA	AV _{DD2,3} = 3.6V
IREF ¹	DAC Reference Current	-3	-10	mA	Note 1

NOTE:

1) See the detailed pin description in Section 2.5 for information regarding nominal I_{REF} .

114

ELECTRICAL SPECIFICATIONS

7.4 DC Specifications (Frequency Synthesizer)

(V_{CC} = 3.3V \pm 0.3V, T_A = 0° to 70° C, unless otherwise specified)

Symbol	Parameter	MIN	MAX	Units	Conditions	Note
AV _{DD1,4}	Synthesizer Supply Voltage	3.00	3.60	Volts		
I _{DD1}	Analog Supply Current		tbd ⁸	mA	AV _{DD1,4} = 3.6V	

7.5 DAC Characteristics

(V_{CC} = $3.3V \pm 0.3V$, T_A = 0° to 70° C, unless otherwise specified)

Symbol	Parameter	MIN	MAX	Units	Conditions	Note
R	Resolution		6	Bits		
10	Output Current		30	mA	VO < 1V	
t _D	Analog Output Delay		tbd ⁸	ns		1, 2, 3
t _r , t _f	Analog Output Rise/Fall Time		8	ns		2, 3, 4
ts	Analog Output Settling Time		15	ns		2, 3, 5
^t SK	Analog Output Skew		tbd	ns		2, 3, 6
FT	Clock and Data Feed-through		tbd	dB		2, 3, 6
DT	DAC-to-DAC Correlation		tbd	%		6, 7
GI	Glitch Impulse	1	tbd	pV/sec.		2, 3, 6
СТ	DAC-to-DAC Crosstalk	1	tbd	dB		2, 3, 4

NOTES:

- 1) t_D is measured from the 50% point of VCLK to 50% point of full-scale transition.
- 2) Load is 50 ohms and 30 pF per analog output.
- 3) I_{REF} = -6.9 mA.
- 4) t_r and t_f are measured from 10% to 90% full-scale.
- 5) t_s is measured from 50% of full-scale transition to output remaining within 2% of final value.
- 6) Outputs loaded identically.
- 7) About the mid-point of the distribution of the three DACs measured at full-scale output.
- 8) tbd = to be determined.

October 1993

PRELIMINARY DATA BOOK

ELECTRICAL SPECIFICATIONS 115

7.6 AC Specifications

7.6.1 List of Waveforms

Table/Figure Title

Page

IDA Due late days Tistan	4 4 7
ISA Bus-Interface Timing	117
BALE Timing (ISA Bus)	119
EROM* Timing (ISA Bus)	120
AEN Timing (ISA Bus)	120
PI Bus-Interface Timing	121
CLK1X, CLK2X Timing (Local Bus)	123
Reset Timing (Local Bus)	124
ADS#, LBA# Timing (Local Bus) (Not Pipelined)	126
LBA#, BS16# Timing (Local Bus) (Pipelined)	126
BRDY# Delay (Local Bus)	127
Read Data Timing (Local Bus)	127
Buffer Control Timing: 16-bit Cycle ('486 Local Bus)	128
Display Memory-Bus Read Timing	129
Display Memory-Bus Write Timing	131
CAS*-Before-RAS* Refresh Timing (Display Memory Bus)	133
STN Monochrome and Color-Passive LCD Interface Timing	135
TFT, EL, Plasma Color, and Color Single-Scan LCD Interface Timing	137
Frequency-Synthesizer Input Clock Specification	139
	ISA Bus-Interface Timing BALE Timing (ISA Bus) EROM* Timing (ISA Bus) AEN Timing (ISA Bus) PI Bus-Interface Timing CLK1X, CLK2X Timing (Local Bus) Reset Timing (Local Bus) ADS#, LBA# Timing (Local Bus) (Not Pipelined) LBA#, BS16# Timing (Local Bus) (Pipelined) BRDY# Delay (Local Bus) Read Data Timing (Local Bus) Buffer Control Timing: 16-bit Cycle ('486 Local Bus) Display Memory-Bus Read Timing Display Memory-Bus Write Timing CAS*-Before-RAS* Refresh Timing (Display Memory Bus) Reset Timing. STN Monochrome and Color-Passive LCD Interface Timing TFT, EL, Plasma Color, and Color Single-Scan LCD Interface Timing Frequency-Synthesizer Input Clock Specification

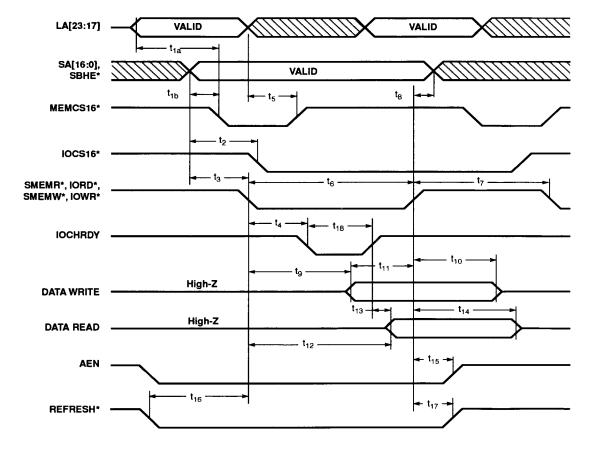
Table 7–1. Bus Signal Timing (ISA Bus)^a

Symbol	Parameter	MIN	MAX	Units
t _{1a} t _{1b}	MEMCS16* 'low' delay from LA[23:17] valid MEMCS16* 'low' delay from SA[16:15] valid		20 14	ns ns
t ₂	IOCS16* 'low' delay from Address	-	25	ns
t3 ^{b, c}	Address, SBHE* setup time to any command active	5.0	-	ns
t ₄	Any command active to IOCHRDY 'low' delay	-	28	ns
t ₅	MEMCS16* 'high' delay from address invalid	-	25	ns
t ₆	IOWR* pulse width IORD* pulse width SMEMW* pulse width SMEMR* pulse width	40 60 3 3	- - d	ns ns t ^e t ^e
t ₇	IOWR* 'high' setup time to any command active SMEMW* 'high' setup time to next SMEMW* 'low'	80 3		ns t ^e
t _B	Address, SBHE* hold time from any command inactive	0	_	ns
tg	Data valid delay from SMEMW* 'low' Data valid delay from IOWR* 'low'		3 130	t ^e ns
t ₁₀	Data hold time from SMEMW* 'high' Data hold time from IOWR* 'high'	10 0	-	ns ns
t ₁₁	Data setup time to IOWR* 'high'	5.0	_	ns
t ₁₂	Data delay from IORD*,SMEMR* 'low'	0	60	ns
t ₁₃	Data delay from IOCHRDY 'high'	-	15	ns
t ₁₄	Data hold time from IORD*, SMEMR* 'high' Data to high-impedance delay from IORD*, SMEMR* 'high'	0	- 20	ns ns
t ₁₅	AEN 'high' (hold time) from IORD* or IOWR* 'high'	5.0	-	ns
t ₁₆	REFRESH* setup time to SMEMR* 'low'	20	-	ns
t ₁₇	REFRESH* 'high' (hold time) from SMEMR* 'low'	0	-	ns
t ₁₈	IOCHRDY 'low' pulse width	10	-	ns

a. The ISA-bus interface specifications are valid from 0° to 70° C at operating voltages of 3.3 volts ± 0.3 volts and 5 volts ± 0.25 volts.

b. AEN must be 'low' for t_2 , t_3 , t_6 .

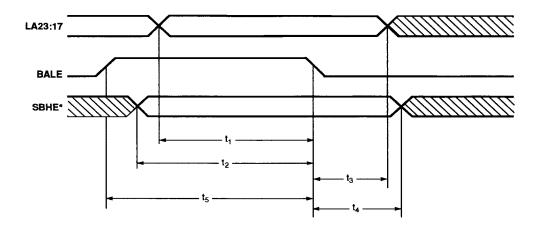
c. Command is defined as IORD*, IOWR*, SMEMR*, or SMEMW*.


d. SMEMR* active-pulse width is determined by IOCHRDY.

e.t = MCLK period.

October 1993

PRELIMINARY DATA BOOK


118 ELECTRICAL SPECIFICATIONS

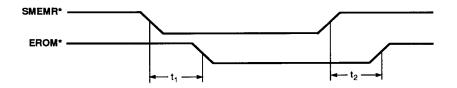
PRELIMINARY DATA BOOK

Table 7–2. BALE Timing (ISA Bus)

Symbol	Parameter	MIN	MAX	Units
t ₁	LA23:17 setup time to BALE negative transition	20	-	ns
t ₂	SBHE* setup time to BALE negative transition	20	-	ns
t ₃	LA23:17 hold time from BALE negative transition	20	-	ns
t ₄	SBHE* hold time from BALE negative transition	20	-	ns
t ₅	BALE 'high' Pulse Width	20		ns

Figure 7–2. BALE Timing (ISA Bus)

October 1993


PRELIMINARY DATA BOOK

ELECTRICAL SPECIFICATIONS 119

Table 7–3. EROM* Timing (ISA Bus)

Symbol	Parameter	MIN	МАХ	Units
t ₁	EROM* 'low' delay from SMEMR* 'low'	-	30	ns
t ₂	EROM* 'high' delay from SMEMR* 'high'	-	20	ns

Figure 7–3. EROM* Timing (ISA Bus)

Table 7-4. AEN Timing (ISA Bus)^a

Symbol	Parameter	MIN	МАХ	Units
t ₁	AEN setup time to IORD* or IOWR* 'low'	5.0	-	ns
t ₂	AEN hold time from IORD* or IOWR* 'high'	5.0	-	ns

a. AEN 'high', as shown below, will cause the CL-GD62XX to disregard the I/O Cycle.

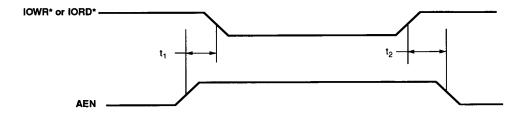


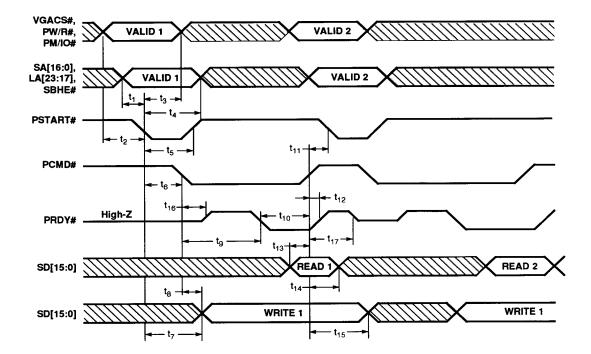
Figure 7–4. AEN Timing (ISA Bus)

120 ELECTRICAL SPECIFICATIONS

PRELIMINARY DATA BOOK

Table 7-5. PI Bus-Interface Timing^a

Symbol	Parameter	MIN	MAX	Units
t ₁	Address setup time to PSTART# 'low'	10	-	ns
t ₂	Command setup time to PSTART# 'low'	20	-	ns
t ₃	Command hold time from PSTART# 'low'	38	-	ns
t ₄	Address hold time from PSTART# 'low'	40	_	ns
t ₅	PSTART# 'low' pulse width	35	-	ns
t ₆	PCMD# 'low' setup time from PSTART# 'low'	20	-	ns
t ₇	Write data valid delay from PSTART# 'low'	-	52	ns
t ₈	Write data valid delay from PCMD# 'low'		20	ns
tg	PRDY# 'low' delay from PCMD# 'low'	80	5000	ns
t ₁₀	PCMD# 'high' hold time from PRDY# 'low'	26	-	ns
t ₁₁	PSTART# 'low' setup time from PCMD# 'high'	0	-	ns
t ₁₂	PDRY# 'high' delay from PCMD# 'high'	0	10	ns
t ₁₃	Read data setup time to PCMD# 'high'	48	-	ns
t ₁₄	Read data hold time from PCMD# 'high'	12	-	ns
t ₁₅	Write data hold time from PCMD# 'high'	20	-	ns
t ₁₆	PRDY# 'low' delay from PCMD# 'low'	0	30	ns
t ₁₇	PRDY# 'high' to PRDY# high-impedance delay	5.0	30	ns


a. The PI-bus interface specifications are valid from 0° to 70° C at operating voltages of 3.3 volts ± 0.3 volts and 5 volts ± 0.25 volts.

October 1993

PRELIMINARY DATA BOOK

ELECTRICAL SPECIFICATIONS 121

122 ELECTRICAL SPECIFICATIONS

PRELIMINARY DATA BOOK

October 1993

This Material Copyrighted By Its Respective Manufacturer

Table 7–6.	CLK1X,	CLK2X Timing	(Local Bus)
------------	--------	--------------	-------------

Symbol	Parameter	CL	K2X	CLI	K1X	Linite
Symbol	Farameter	MIN	MAX	MIN	MAX	Units
t ₁	Rise time	-	4.0	_	4.0	ns
t ₂	Fall time		4.0	-	4.0	ns
t ₃	Positive 'high' pulse width	40	60	40	60	% t ₅
t ₄	Negative 'low' pulse width	40	60	40	60	% t ₅
t ₅	Period	12.5	-	20	-	ns

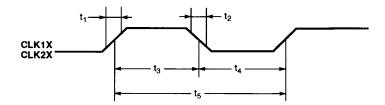


Figure 7–6. CLK1X, CLK2X Timing (Local Bus)

October 1993

PRELIMINARY DATA BOOK

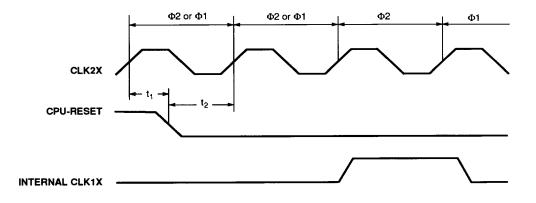
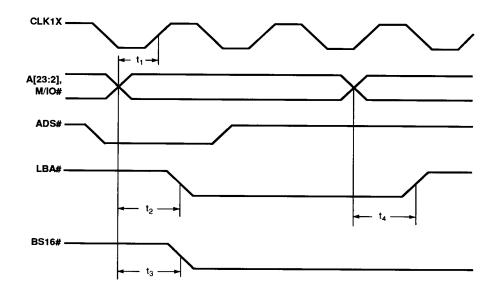

ELECTRICAL SPECIFICATIONS

Table 7–7. Reset Timing (Local Bus)^a

Symbol	Parameter	MIN	MAX	Units
t ₁	CPU-RESET hold time from CLK2X	4.0	-	ns
t ₂	CPU-RESET setup time to CLK2X	2.0	-	ns

a. Applies to '386 only. For '486, CPU-RESET may be tied to RESET.

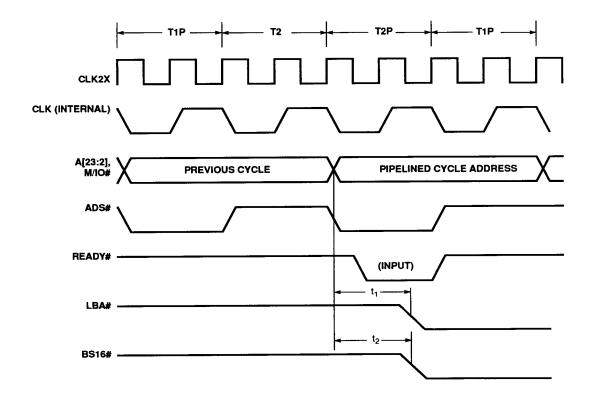

124 ELECTRICAL SPECIFICATIONS

PRELIMINARY DATA BOOK

Table 7–8.	ADS#, LBA# Timing	(Local Bus)	(Not Pipelined)
------------	-------------------	-------------	-----------------

Symbol	Parameter	MIN	MAX	Units
t ₁	Address, status, ADS# setup time to CLK1X	5.0	_	ns
t ₂	LBA# 'low' delay from address, Status (20-pF loading)	-	15	ns
t ₃	BS16# 'low' delay from address, status	-	15	ns
t ₄	LBA# 'high' delay from address, status	-	18	ns

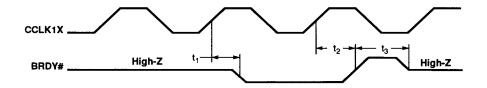
October 1993


PRELIMINARY DATA BOOK

ELECTRICAL SPECIFICATIONS

Table 7–9. LBA#, BS16# Timing (Local Bus) (Pipelined)

Symbol	Parameter	MIN	MAX	Units
t ₁	LBA# delay from address	_	25	ns
t ₂	BS16# delay from address	+	25	ns


126 ELECTRICAL SPECIFICATIONS

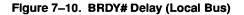

PRELIMINARY DATA BOOK

Table 7–10. BRDY# Delay (Local Bus)

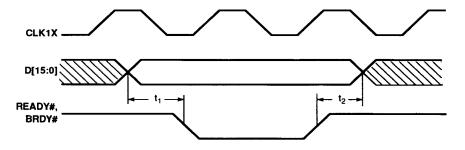
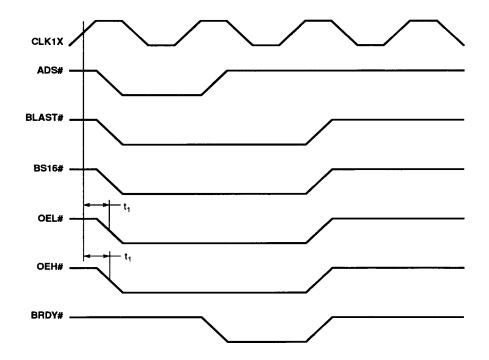

Symbol	Parameter	MIN	MAX	Units
t ₁	BRDY# active delay from CLK1X	-	12	ns
t ₂	BRDY# 'high' delay from CLK1X		12	ns
t ₃	BRDY# 'high' before high-impedance	-	1/2	CCLK1X

Table 7–11. Read Data Timing (Local Bus)

Symbol	Parameter	MIN	MAX	Units
t ₁	Read data setup time to READY#, BRDY# 'low'	15	-	ns
t ₂	Read data hold time from READY#, BRDY# 'high'	12	-	ns

October 1993


PRELIMINARY DATA BOOK

ELECTRICAL SPECIFICATIONS

Table 7–12. Buffer Control Timing: 16-Bit Cycle ('486 Local Bus)

Symbol	Parameter	MIN	МАХ	Units
t ₁	Clock to OEL#, OEH# delay	0	14	ns

128 ELECTRICAL SPECIFICATIONS

PRELIMINARY DATA BOOK

Table 7–13. Display-Memory Bus Read Timing (t^b = MCLK)^a

Symbol	Parameter	MIN	МАХ	UNITS
t ₁	Row address setup time to RAS* 'low'	5.0	-	ns
t ₂	Column address setup time to CAS* 'low'	5.0	-	ns
t ₃	RAS* 'low' to CAS* 'low' delay	2.5	-	t ^b
t ₄	Row address hold time from RAS* 'low'	1.0	-	t ^b
t ₅	Column address hold time from CAS* 'low'	1.0	-	ťÞ
t ₆	Data valid delay from RAS* 'low'	-	4.0	t ^b
t ₇	Data valid delay from CAS* 'low'	-	1.5	t ^b
t ₈	Data valid delay from column address valid	-	2.0	t ^b
tg	RAS* precharge (RAS* Pulse Width 'high')	3.0	-	t ^b
t ₁₀	Read cycle time	7.0	-	t ^b
t ₁₁	Read command hold time from CAS* 'high'	0.5	-	t ^b
t ₁₂	CAS* precharge (CAS* pulse width 'high')	0.5	-	t ^b
t ₁₃	RAS* pulse width 'low' RAS* pulse width 'low' (Page mode)	4.0	- 32	t ^b μs
t ₁₄	CAS* pulse width 'low'	1.5	- 32	t ^b μs
t ₁₅	Read data hold time from CAS* 'high'	10		ns
t ₁₆	Read command setup time	5.0	-	ns
t ₁₇	Data valid delay from OE* 'low'	-	1.5	t ^b
t ₁₈	Read command hold time from RAS* 'high'	1.0	-	t ^b
t ₁₉	RAS* hold time from OE* 'low'	1.5	-	t ^b
t ₂₀	CAS* 'high' setup time to RAS* 'low' (precharge time)	0.5	-	t ^b
t ₂₁	RAS* 'low' to CAS* 'high'	4.0	-	t ^b
t ₂₂	CAS* cycle time	2.0	-	t ^b
t ₂₃	Read data hold time from OE* 'high'	10	-	ns

a. The memory interface specifications are valid from 0° to 70° C at operating voltages of 3.3 volts ± 0.3 volts and 5 volts ± 0.25 volts.

b. 't' is the MCLK period, an internal clock.

October 1993

PRELIMINARY DATA BOOK

ELECTRICAL SPECIFICATIONS

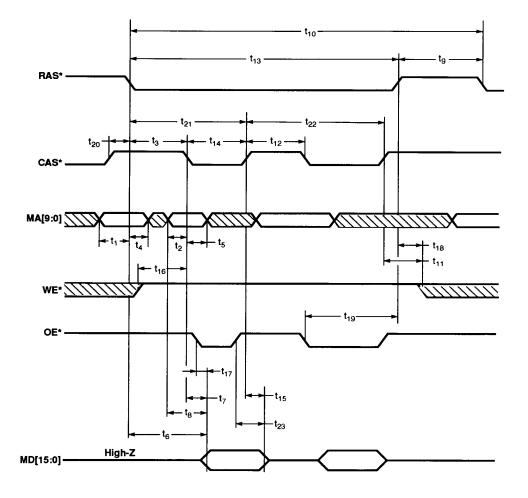


Figure 7–13. Display-Memory Bus Read Timing (t = MCLK)

ELECTRICAL SPECIFICATIONS

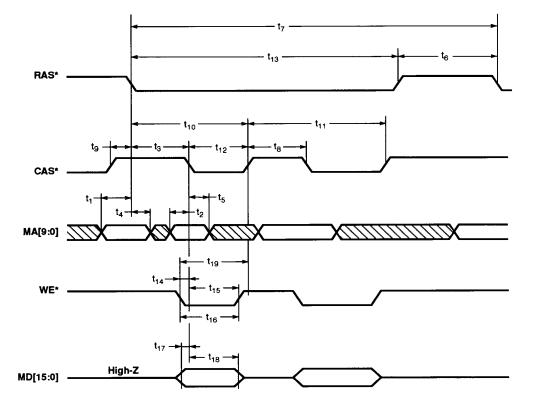
130

PRELIMINARY DATA BOOK

Table 7–14. Display-Memory Bus Write Timing (t^b = MCLK)^a

Symbol	Parameter	MIN	MAX	UNITS
t ₁	Address setup time to RAS* 'low'	5.0	-	ns
t ₂	Address setup time to CAS* 'low'	5.0	-	ns
t ₃	RAS* 'low' to CAS* 'low' delay	2.5	-	t ^b
t ₄	Row address hold time from RAS* 'low'	1.0	-	t ^b
t ₅	Column address hold time from CAS* 'low'	1.0	-	t ^b
t ₆	RAS* precharge (RAS* pulse width 'high')	3.0	-	t ^b
t ₇	Write cycle time	7.0	-	t ^b
t ₈	CAS* precharge (CAS* pulse width 'high')	0.5	-	t ^b
tg	CAS* 'high' setup time to RAS* 'low' (precharge time)	0.5	-	t ^b
t ₁₀	RAS* 'low' to CAS* 'high'	4.0	-	ťÞ
t ₁₁	CAS* cycle time	2.0	-	t ^b
t ₁₂	CAS* pulse width 'low'	1.5 -	- 32	t ^b μs
t ₁₃	RAS* pulse width 'low' RAS* pulse width 'low' (Page mode)	4.0	- 32	t ^b μs
t ₁₄	WE* 'low' setup time to CAS* 'low'	0.5	-	t ^b
t ₁₅	WE* 'low' hold time to CAS* 'low'	0.5	-	t ^b
t ₁₆	WE* 'low' pulse width	1.0	-	t ^b
t ₁₇	Write data setup time to CAS* 'low'	5.0	-	ns
t ₁₈	Write data hold time from CAS* 'low'	1.0	-	t ^b
t ₁₉	WE* 'low' to CAS* 'high' delay time	1.0	_	t ^b

a. The memory interface specifications are valid from 0° to 70° C at operating voltages of 3.3 volts \pm 0.3 volts and 5 volts \pm 0.25 volts.


b. 't' is the MCLK period, an internal clock.

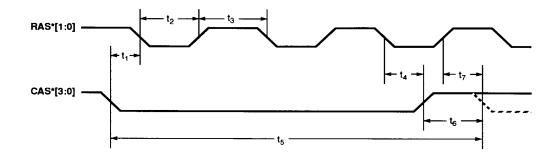
October 1993

PRELIMINARY DATA BOOK

ELECTRICAL SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

132


PRELIMINARY DATA BOOK

Symbol	Parameter	MIN	МАХ	Units	
t ₁	CAS* 'low' setup time to RAS* 'low'	1.0	_	t ^b	
t ₂	RAS* 'low' pulse width	4.0	_	ťb	
t ₃	RAS* 'high' pulse width	3.0	-	ť	
t4	CAS* hold time for refresh	1.5	-	t ^b	
t ₅	Refresh cycle period	7.0	-	t ^b	
t ₆	CAS* pulse width 'high' (precharge time)	2.0	-	t ^b	
t ₇	RAS* 'high' to CAS* 'low' (precharge time)	1.0	-	tb	

a. There will be either three or four RAS* pulses while CAS* remains 'low'.

b. 't' is the SQCLK period, an internal clock.

October 1993

PRELIMINARY DATA BOOK

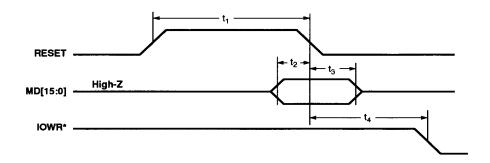

ELECTRICAL SPECIFICATIONS 133

Table 7–16. Reset Timing

Symbol	Parameter	MIN	MAX	Units
t ₁	RESET pulse width 'high'	12	_	t ^a
t ₂	MD[15:0] setup to RESET negative edge	2.0	-	ns
t ₃	MD[15:0] hold from RESET negative edge	5.0	-	ns
t ₄	RESET 'low' to first IOWR*	12	-	t ^a

a. t = MCLK period

134 ELECTRICAL SPECIFICATIONS

PRELIMINARY DATA BOOK

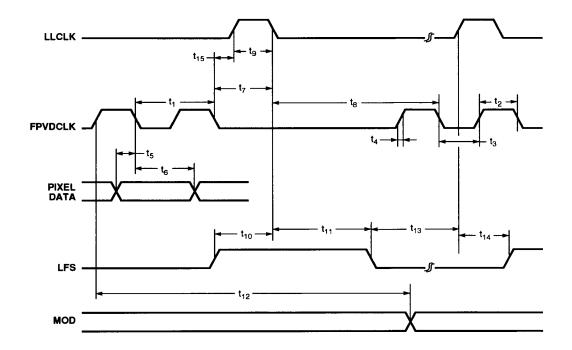
October 1993

This Material Copyrighted By Its Respective Manufacturer

.....

Table 7–17. STN Monochrome and Color-Passive LCD Interface Timing^a

Cumbol	Deservator	M2DD-8	M2SS-4	C8DD-8	C8DD-16	C8SS-16	C8SSI-d-8
Symbol	Parameter	Mono.	Mono.	Color	Color	Color	Color
t ₁	FPVDCLK period	160 ns	225 ns	82 ns	175 ns	200 ns	210 ns
t ₂	FPVDCLK 'high' time	145 ns	70 ns	30 ns	60 ns	50 ns	30 ns
t ₃	FPVDCLK 'low' time	145 ns	70 ns	30 ns	60 ns	50 ns	30 ns
t ₄	FPVDCLK rise and fall time	150 ns MAX	20 ns MAX	13 ns MAX	30 ns MAX	30 ns MAX	30 ns MAX
t ₅	Data setup time	80 ns	50 ns	30 ns	30 ns	40 ns	30 ns
t ₆	Data hold time	80 ns	100 ns	20 ns	30 ns	50 ns	30 ns
t ₇	FPVDCLK 'low' to LLCLK 'low'	150 ns	100 ns	100 ns	70 ns	250 ns	270 ns
t ₈	FPVDCLK 'low' from LLCLK 'low'	150 ns	100 ns	200 ns	20 ns	250 ns	260 ns
t ₉	LLCLK 'high' time	125 ns	63 ns	70 ns	60 ns	150 ns	70 ns
t ₁₀	LFS 'high' setup to LLCLK 'low'	100 ns	100 ns	150 ns	10 ns	150 ns	100 ns
t ₁₁	LFS 'high' hold time to LLCLK 'low'	100 ns	100 ns	150 ns	40 ns	50 ns	40 ns
t ₁₂	MOD delay from FPVDCLK 'high'	300 ns MAX					
t ₁₃	LFS 'low' setup to FPVDCLK	NA	NA	NA	NA	NA	100 ns
t ₁₄	LFS 'low' hold from FPVDCLK	NA	NA	NA	NA	NA	40 ns


a. Values are MIN unless specified otherwise.

October 1993

PRELIMINARY DATA BOOK

ELECTRICAL SPECIFICATIONS

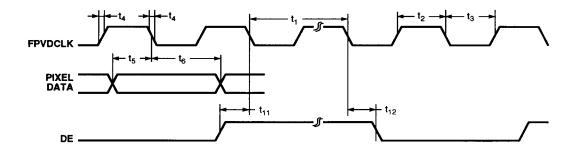
Figure 7–17. STN Monochrome and Color-Passive LCD interface Timing

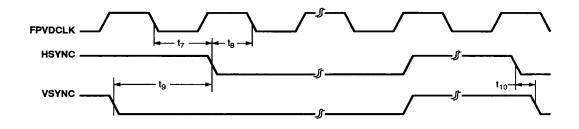
ELECTRICAL SPECIFICATIONS

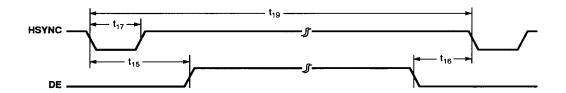
136

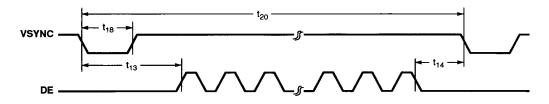
PRELIMINARY DATA BOOK

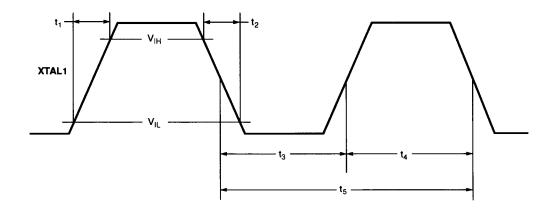
Symbol	Parameter	MIN	МАХ	UNITS
t ₁	FPVDCLK period	40	_	ns
t ₂	FPVDCLK 'high' time	10	-	ns
t ₃	FPVDCLK 'low' time	10	_	ns
t ₄	FPVDCLK rise and fall time	-	10	ns
t ₅	Data setup time	10	-	ns
t ₆	Data hold time	12	_	ns
t ₇	HSYNC setup to FPVDCLK	13	-	ns
t ₈	HSYNC hold to FPVDCLK	13	-	ns
t ₉	VSYNC setup to HSYNC	1.5	_	t ₁
t ₁₀	VSYNC hold to HSYNC	1.0	-	t ₁
t ₁₁	DE setup to FPVDCLK	10	-	ns
t ₁₂	DE hold to FPVDCLK	10	_	ns
t ₁₃	Vertical front porch	0	30	lines
t ₁₄	Vertical back porch	1.0	31	lines
t ₁₅	Horizontal front porch	0	96	t ₁
t ₁₆	Horizontal back porch	32	128	t ₁
t ₁₇	HSYNC width	32	128	t ₁
t ₁₈	VSYNC width	1.0	2.0	lines
t ₁₉	Horizontal cycle time		tbd	
t ₂₀	Vertical cycle time		tbd	


Table 7--18. TFT Color Single-Scan LCD Interface Timing^{a, b}


a. HYSYNC pulse width is programmable with a choice of 32, 64, 96, and 128 FPVDCLKs. Refer to the explanation of ERF4. VSYNC pulse width is programmable with a choice of one line period or two line periods. Refer to the explanation of ERF4.
 b. *tbd* = to be determined.


October 1993

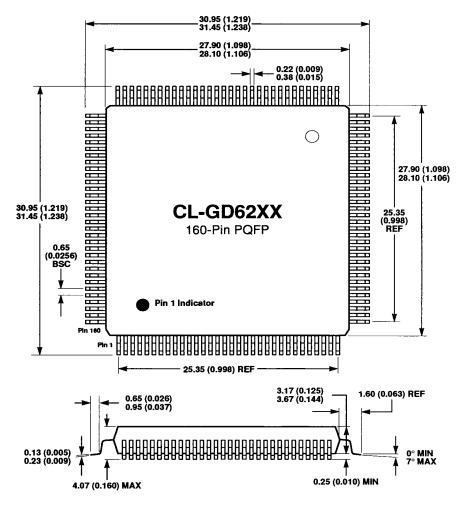

PRELIMINARY DATA BOOK


ELECTRICAL SPECIFICATIONS

138

PRELIMINARY DATA BOOK

Symbol	Parameter	V _{DD} = 3.3	V ± 0.3V	$V_{DD} = 5.0V \pm 0.25V$		
	Parameter	MIN	MAX	MIN	МАХ	
t ₁	Input clock rise time	1.0 ns	7.0 ns	1.0 ns	7.0 ns	
t ₂	Input clock fall time	1.0 ns	7.0 ns	1.0 ns	7.0 ns	
t ₃	Input clock 'low' period	t _{CLKP} /2 - 10% t ₅	t _{CLKP} + 10% t ₅	t _{CLKP} - 10% t ₅	t _{CLKP} + 10 % t ₅	
t ₄	Input clock 'high' period	t _{CLKP} /2 - 10% t ₅	t _{CLKP} + 10% t ₅	t _{CLKP} - 10% t ₅	t _{CLKP} + 10 % t ₅	
t ₅	Input clock frequency/ period	69.84 ns - 0.1 %	69.84 ns + 0.1 %	69.84 ns - 0.1 %	69.84 ns + 0.1 %	
V _{IH}	Input 'high' voltage	2.0 volts	V _{DD}	2.0 volts	V _{DD}	
V _{IL}	Input 'low' voltage	GND	0.5 volts	GND	0.8 volts	


October 1993

PRELIMINARY DATA BOOK

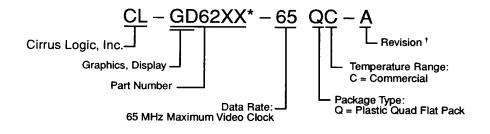
ELECTRICAL SPECIFICATIONS

8. PACKAGE DIMENSIONS

NOTES:

- 1) Dimensions are in millimeters (inches).
- 2) Drawing above does not reflect exact package pin count.
- 3) Before beginning any new design with this device, please contact Cirrus Logic for the latest information.

140


PACKAGE DIMENSIONS

PRELIMINARY DATA BOOK

9. ORDERING INFORMATION

9.1 Package Marking Numbering Guide

* GD62XX' represents CL-GD6205, CL-GD6215, CL-GD6225, or CL-GD6235, respectively. † Contact Cirrus Logic, Inc. for up-to-date information on revisions.

October 1993

PRELIMINARY DATA BOOK

ORDERING INFORMATION